Alfvenic interaction; Jupiter decametric emission; Jupiter magnetosphere; moon-magnetosphere interaction; satellite footprint; UV-aurora; Geophysics; Space and Planetary Science; astro-ph.EP
Abstract :
[en] Jupiter's satellite auroral footprints are a consequence of the interaction between the Jovian magnetic field with co-rotating iogenic plasma and the Galilean moons. The disturbances created near the moons propagate as Alfvén waves along the magnetic field lines. The position of the moons is therefore “Alfvénically” connected to their respective auroral footprint. The angular separation from the instantaneous magnetic footprint can be estimated by the so-called lead angle. That lead angle varies periodically as a function of orbital longitude, since the time for the Alfvén waves to reach the Jovian ionosphere varies accordingly. Using spectral images of the Main Alfvén Wing auroral spots collected by Juno-UVS during the first 43 orbits, this work provides the first empirical model of the Io, Europa, and Ganymede equatorial lead angles for the northern and southern hemispheres. Alfvén travel times between the three innermost Galilean moons to Jupiter's northern and southern hemispheres are estimated from the lead angle measurements. We also demonstrate the accuracy of the mapping from the Juno magnetic field reference model (JRM33) at the completion of the prime mission for M-shells extending to at least 15 RJ. Finally, we shows how the added knowledge of the lead angle can improve the interpretation of the moon-induced decametric emissions.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Hue, Vincent ; Aix-Marseille Université, CNRS, CNES, Institut Origines, LAM, Marseille, France ; Southwest Research Institute, San Antonio, United States
Gladstone, G.R. ; Southwest Research Institute, San Antonio, United States ; University of Texas at San Antonio, San Antonio, United States
Louis, Corentin K. ; School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin, Ireland
Greathouse, Thomas K. ; Southwest Research Institute, San Antonio, United States
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Szalay, Jamey R. ; Department of Astrophysical Sciences, Princeton University, Princeton, United States
Moirano, Alessandro ; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Rome, Italy ; Sapienza University of Rome, Rome, Italy
Giles, Rohini S. ; Southwest Research Institute, San Antonio, United States
Kammer, Joshua A. ; Southwest Research Institute, San Antonio, United States
Imai, Masafumi ; Department of Electrical Engineering and Information Science, National Institute of Technology (KOSEN), Niihama College, Niihama, Japan
Mura, Alessandro ; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Rome, Italy
Versteeg, Maarten H. ; Southwest Research Institute, San Antonio, United States
Clark, George ; Johns Hopkins University Applied Physics Laboratory, Laurel, United States
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Rabia, Jonas ; Institut de Recherche en Astrophysique et Planétologie, CNRS-UPS-CNES, Toulouse, France
Sulaiman, Ali H. ; Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, United States
Bolton, Scott J. ; Southwest Research Institute, San Antonio, United States
Connerney, J.E.P. ; NASA Goddard Spaceflight Center, Greenbelt, United States ; Space Research Corporation, Annapolis, United States
NASA - National Aeronautics and Space Administration SFI - Science Foundation Ireland AMU - Aix-Marseille University F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
We are grateful to NASA and contributing institutions that have made the Juno mission possible. This work was funded by the NASA's New Frontiers Program for Juno via contract NNM06AA75C with the Southwest Research Institute. CKL's work at the Dublin Institute for Advanced Studies was funded by Science Foundation Ireland Grant 18/FRL/6199. AHS acknowledges NASA NFDAP Grant 80NSSC23K0276. Hue acknowledges support from the French government under the France 2030 investment plan, as part of the Initiative d’Excellence d’Aix-Marseille Université – A*MIDEX AMX-22-CPJ-04.We are grateful to NASA and contributing institutions that have made the Juno mission possible. This work was funded by the NASA's New Frontiers Program for Juno via contract NNM06AA75C with the Southwest Research Institute. CKL's work at the Dublin Institute for Advanced Studies was funded by Science Foundation Ireland Grant 18/FRL/6199. AHS acknowledges NASA NFDAP Grant 80NSSC23K0276. Hue acknowledges support from the French government under the France 2030 investment plan, as part of the Initiative d’Excellence d’Aix‐Marseille Université – A*MIDEX AMX‐22‐CPJ‐04.
Commentary :
20 pages, 8 figures, Accepted for publication in Journal of
Geophysical Research: Space Physics on 20 April 2023
Acton, C., Bachman, N., Semenov, B., & Wright, E. (2018). A look towards the future in the handling of space science mission geometry. Planetary and Space Science, 150, 9–12. https://doi.org/10.1016/j.pss.2017.02.013
Acton, C. H. (1996). Ancillary data services of NASA’s navigation and ancillary information facility. Planetary and Space Science, 44(1), 65–70. https://doi.org/10.1016/0032-0633(95)00107-7
Acuna, M. H., Behannon, K. W., & Connerney, J. E. P. (1983). Physics of the Jovian magnetosphere. 1. Jupiter’s magnetic field and magnetosphere. In Physics of the jovian magnetosphere (pp. 1–50).
Acuna, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfvén wave current system at Io. Voyager 1 Observations, 86(A10), 8513–8521. https://doi.org/10.1029/JA086iA10p08513
Allegrini, F., Gladstone, G. R., Hue, V., Clark, G., Szalay, J. R., Kurth, W. S., et al. (2020). First report of electron measurements during a Europa footprint tail crossing by Juno. Geophysical Research Letters, 47(18), e89732. https://doi.org/10.1029/2020GL089732
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1–4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bagenal, F., & Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research (Space Physics), 116(A5), A05209. https://doi.org/10.1029/2010JA016294
Bagenal, F., & Dols, V. (2020). The space environment of Io and Europa. Journal of Geophysical Research (Space Physics), 125(5), e27485. https://doi.org/10.1029/2019JA027485
Bagenal, F., Sidrow, E., Wilson, R. J., Cassidy, T. A., Dols, V., Crary, F. J., et al. (2015). Plasma conditions at Europa's orbit. Icarus, 261, 1–13. https://doi.org/10.1016/j.icarus.2015.07.036
Bagenal, F., Wilson, R. J., Siler, S., Paterson, W. R., & Kurth, W. S. (2016). Survey of Galileo plasma observations in Jupiter’s plasma sheet. Journal of Geophysical Research (Planets), 121(5), 871–894. https://doi.org/10.1002/2016JE005009
Belcher, J. W. (1983). Physics of the Jovian magnetosphere. 3. The low-energy plasma in the Jovian magnetosphere. In Physics of the Jovian magnetosphere (pp. 68–105). https://doi.org/10.1017/cbo9780511564574.005
Belcher, J. W., Goertz, C. K., Sullivan, J. D., & Acuna, M. H. (1981). Plasma observations of the Alfvén wave generated by Io. Journal of Geophysical Research, 86(A10), 8508–8512. https://doi.org/10.1029/JA086iA10p08508
Bigg, E. K. (1964). Influence of the satellite io on jupiter’s decametric emission. Nature, 203(4949), 1008–1010. https://doi.org/10.1038/2031008a0
Bolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. (2017). Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 356(6340), 821–825. https://doi.org/10.1126/science.aal2108
Bonfond, B. (2010). The 3-D extent of the Io UV footprint on Jupiter. Journal of Geophysical Research (Space Physics), 115(A9), A09217. https://doi.org/10.1029/2010JA015475
Bonfond, B., Gladstone, G. R., Grodent, D., Gérard, J. C., Greathouse, T. K., Hue, V., et al. (2018). Bar code events in the Juno-UVS data: Signature 10 MeV electron microbursts at Jupiter. Geophysical Research Letters, 45(22), 12108–12115. https://doi.org/10.1029/2018GL080490
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., et al. (2017). Morphology of the UV aurorae Jupiter during. Juno’s First Perijove Observations, 44(10), 4463–4471. https://doi.org/10.1002/2017GL073114
Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Dols, V., Delamere, P. A., & Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. Journal of Geophysical Research (Space Physics), 114(A7), A07224. https://doi.org/10.1029/2009JA014312
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35(5), L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Grodent, D., Gérard, J. C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophysical Research Letters, 39(1), L01105. https://doi.org/10.1029/2011GL050253
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., et al. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research (Space Physics), 122(8), 7985–7996. https://doi.org/10.1002/2017JA024370
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J. C., Matar, J., et al. (2021). Are dawn storms Jupiter’s auroral substorms? AGU Advances, 2(1), e00275. https://doi.org/10.1029/2020AV000275
Cecconi, B., & Zarka, P. (2005). Direction finding and antenna calibration through analytical inversion of radio measurements performed using a system of 2 or 3 electric dipole antennas. Radio Science - RADIO SCI, 40. https://doi.org/10.1029/2004RS003070
Clark, G., Mauk, B. H., Kollmann, P., Szalay, J. R., Sulaiman, A. H., Gershman, D. J., et al. (2020). Energetic proton acceleration associated with Io’s footprint tail. Geophysical Research Letters, 47(24), e90839. https://doi.org/10.1029/2020GL090839
Clarke, J. T., Ajello, J., Ballester, G., Ben Jaffel, L., Connerney, J., Gérard, J.-C., et al. (2002). Ultraviolet emissions from the magnetic footprints of Io. Ganymede and Europa on Jupiter, 415(6875), 997–1000. https://doi.org/10.1038/415997a
Clarke, J. T., Ballester, G. E., Trauger, J., Evans, R., Connerney, J. E. P., Stapelfeldt, K., et al. (1996). Far-ultraviolet imaging of Jupiter’s aurora and the lo “footprint”. Science, 274(5286), 404–409. https://doi.org/10.1126/science.274.5286.404
Connerney, J. E. P., Acuna, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86(A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370
Connerney, J. E. P., Acuña, M. H., Ness, N. F., & Satoh, T. (1998). New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 103(A6), 11929–11939. https://doi.org/10.1029/97JA03726
Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., et al. (2017). Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3+ at the foot of the Io flux tube in Jupiter’s atmosphere. Science, 262(5136), 1035–1038. https://doi.org/10.1126/science.262.5136.1035
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno era. Journal of Geophysical Research (Space Physics), 125(10), e28138. https://doi.org/10.1029/2020JA028138
Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Kotsiaros, S., et al. (2022). A new model of Jupiter’s magnetic field at the completion of Juno’s prime mission. Journal of Geophysical Research (Planets), 127(2), e07055. https://doi.org/10.1029/2021JE007055
Crary, F. J., & Bagenal, F. (1997). Coupling the plasma interaction at io to jupiter. Geophysical Research Letters, 24(17), 2135–2138. https://doi.org/10.1029/97GL02248
Damiano, P. A., Delamere, P. A., Stauffer, B., Ng, C. S., & Johnson, J. R. (2019). Kinetic simulations of electron acceleration by dispersive scale. Alfvén Waves in Jupiter’s Magnetosphere., 46(6), 3043–3051. https://doi.org/10.1029/2018GL081219
Davis, M. W., Gladstone, G. R., Greathouse, T. K., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2011). Radiometric performance results of the Juno ultraviolet spectrograph (Juno-UVS). SPIE Proceedings, 8146, 814604. https://doi.org/10.1117/12.894274
De Kleer, K., & De Pater, I. (2016). Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015. Icarus, 280, 378–404. https://doi.org/10.1016/j.icarus.2016.06.019
De Kleer, K., Nimmo, F., & Kite, E. (2019). Variability in Io’s volcanism on timescales of periodic orbital changes. Geophysical Research Letters, 46(12), 6327–6332. https://doi.org/10.1029/2019GL082691
Delamere, P. A., Bagenal, F., Ergun, R., & Su, Y. J. (2003). Momentum transfer between the Io plasma wake and Jupiter’s ionosphere. Journal of Geophysical Research (Space Physics), 108(A6), 1241. https://doi.org/10.1029/2002JA009530
Delamere, P. A., Steffl, A., & Bagenal, F. (2004). Modeling temporal variability of plasma conditions in the Io torus during the Cassini era. Journal of Geophysical Research (Space Physics), 109(A10), A10216. https://doi.org/10.1029/2003JA010354
Dessler, A. J. (1983). Coordinate systems. In A. J. Dessler (Ed.), Physics of the jovian magnetosphere (pp. 498–504). Cambridge University Press. https://doi.org/10.1017/CBO9780511564574.016
Ebert, R. W., Greathouse, T. K., Clark, G., Hue, V., Allegrini, F., Bagenal, F., et al. (2021). Simultaneous UV images and high-latitude particle and field measurements during an auroral dawn storm at Jupiter. Journal of Geophysical Research (Space Physics), 126(12), e29679. https://doi.org/10.1029/2021JA029679
Galopeau, P. H. M., & Boudjada, M. Y. (2016). An oblate beaming cone for Io-controlled Jovian decameter emission. Journal of Geophysical Research (Space Physics), 121(4), 3120–3138. https://doi.org/10.1002/2015JA021038
Gérard, J.-C., Saglam, A., Grodent, D., & Clarke, J. T. (2006). Morphology of the ultraviolet Io footprint emission and its control by Io’s location. Journal of Geophysical Research (Space Physics), 111(A4), A04202. https://doi.org/10.1029/2005JA011327
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., Viñas, A. F., et al. (2019). Alfvénic fluctuations associated with Jupiter’s. Auroral Emissions, 46(13), 7157–7165. https://doi.org/10.1029/2019GL082951
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213(1–4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Goldreich, P., & Lynden-Bell, D. (1969). Io: A Jovian unipolar inductor. The Astrophysical Journal, 156, 59. https://doi.org/10.1086/149947
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2013). Performance results from in-flight commissioning of the Juno ultraviolet spectrograph (Juno-UVS). UV, x-ray, and gamma-ray space instrumentation for astronomy xviii, 8859, 88590T. https://doi.org/10.1117/12.2024537
Grodent, D., Bonfond, B., GéRard, J.-C., Radioti, A., Gustin, J., Clarke, J. T., et al. (2008). Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. Journal of Geophysical Research (Space Physics), 113(A9), A09201. https://doi.org/10.1029/2008JA013185
Gurnett, D. A., & Goertz, C. K. (1981). Multiple Alfven wave reflections excited by Io: Origin of the Jovian decametric arcs. Journal of Geophysical Research, 86(A2), 717–722. https://doi.org/10.1029/JA086iA02p00717
Gurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B., Averkamp, T. F., Zarka, P., et al. (2004). The Cassini radio and plasma wave investigation. Space Science Reviews, 114(1–4), 395–463. https://doi.org/10.1007/s11214-004-1434-0
Hess, S., Cecconi, B., & Zarka, P. (2008). Modeling of Io-Jupiter decameter arcs. emission beaming and energy source, 35(13), L13107. https://doi.org/10.1029/2008GL033656
Hess, S. L. G., Bonfond, B., Bagenal, F., & Lamy, L. (2017). A model of the Jovian internal field derived from in-situ and auroral constraints. In G. Fischer, G. Mann, M. Panchenko, & P. Zarka (Eds.), Planetary radio emissions viii (pp. 157–167). https://doi.org/10.1553/PRE8s157
Hess, S. L. G., Bonfond, B., Chantry, V., Gérard, J.-C., Grodent, D., Jacobsen, S., & Radioti, A. (2013). Evolution of the Io footprint brightness II: Modeling. Planetary and Space Science, 88, 76–85. https://doi.org/10.1016/j.pss.2013.08.005
Hess, S. L. G., Bonfond, B., Zarka, P., & Grodent, D. (2011). Model of the Jovian magnetic field topology constrained by the Io auroral emissions. Journal of Geophysical Research (Space Physics), 116(A5), A05217. https://doi.org/10.1029/2010JA016262
Hess, S. L. G., Delamere, P., Dols, V., Bonfond, B., & Swift, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research (Space Physics), 115(A6), A06205. https://doi.org/10.1029/2009JA014928
Hess, S. L. G., Pétin, A., Zarka, P., Bonfond, B., & Cecconi, B. (2010). Lead angles and emitting electron energies of Io-controlled decameter radio arcs. Planetary and Space Science, 58(10), 1188–1198. https://doi.org/10.1016/j.pss.2010.04.011
Hill, T. W. (1979). Inertial limit on corotation. Journal of Geophysical Research, 84(A11), 6554–6558. https://doi.org/10.1029/JA084iA11p06554
Hill, T. W., & Vasylinas, V. M. (2002). Jovian auroral signature of Io’s corotational wake. Journal of Geophysical Research, 107(A12), SMP271–SMP275. https://doi.org/10.1029/2002JA009514
Hinton, P. C., Bagenal, F., & Bonfond, B. (2019). Alfvén wave propagation in the io plasma torus. Geophysical Research Letters, 46(3), 1242–1249. https://doi.org/10.1029/2018GL081472
Hue, V., Giles, R. S., Gladstone, G. R., Greathouse, T. K., Davis, M. W., Kammer, J. A., & Versteeg, M. H. (2021). Updated radiometric and wavelength calibration of the Juno ultraviolet spectrograph. Journal of Astronomical Telescopes, Instruments, and Systems, 7(04), 044003. https://doi.org/10.1117/1.JATIS.7.4.044003
Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., et al. (2019). Flight characterization and calibration of the Juno-ultraviolet spectrograph (Juno-UVS). AJ, 157(2), 90. https://doi.org/10.3847/1538-3881/aafb36
Hue, V., Greathouse, T. K., Bonfond, B., Saur, J., Gladstone, G. R., Roth, L., et al. (2019). Juno-UVS observation of the Io footprint during solar eclipse. Journal of Geophysical Research (Space Physics), 124(7), 5184–5199. https://doi.org/10.1029/2018JA026431
Hue, V., Szalay, J. R., Greathouse, T. K., Bonfond, B., Kotsiaros, S., Louis, C. K., et al. (2022). A comprehensive set of Juno in situ and remote sensing observations of the Ganymede auroral footprint. Geophysical Research Letters, 49(7), e96994. https://doi.org/10.1029/2021GL096994
Huscher, E., Bagenal, F., Wilson, R. J., Allegrini, F., Ebert, R. W., Valek, P. W., et al. (2021). Survey of Juno observations in Jupiter’s plasma disk: Density. Journal of Geophysical Research (Space Physics), 126(8), e29446. https://doi.org/10.1029/2021JA029446
Jacobsen, S., Neubauer, F. M., Saur, J., & Schilling, N. (2007). Io’s nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophysical Research Letters, 34(10), L10202. https://doi.org/10.1029/2006GL029187
Kammer, J. A., Hue, V., Greathouse, T. K., Gladstone, G. R., Davis, M. W., & Versteeg, M. H. (2019). Planning operations in Jupiter’s high-radiation environment: Optimization strategies from Juno-ultraviolet spectrograph. Journal of Astronomical Telescopes, Instruments, and Systems, 5(02), 027001. https://doi.org/10.1117/1.JATIS.5.2.027001
Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., et al. (2004). Dynamics of the Jovian magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. The planet, satellites and magnetosphere (Vol. 1, pp. 617–638).
Lamy, L., Colomban, L., Zarka, P., Prangé, R., Marques, M. S., Louis, C. K., et al. (2022). Determining the beaming of Io decametric emissions: A remote diagnostic to probe the Io-Jupiter interaction. Journal of Geophysical Research (Space Physics), 127(4), e30160. https://doi.org/10.1029/2021JA030160
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., et al. (2018). Observation of electron conics by Juno: Implications for radio generation and acceleration processes. Geophysical Research Letters, 45(18), 9408–9416. https://doi.org/10.1029/2018GL078973
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., et al. (2017). Generation of the Jovian hectometric radiation. First lessons from Juno, 44(10), 4439–4446. https://doi.org/10.1002/2017GL072923
Louis, C. K., Lamy, L., Zarka, P., Cecconi, B., Hess, S. L. G., & Bonnin, X. (2017). Simulating jupiter-satellite decametric emissions with ExPRES: A parametric study. In G. Fischer, G. Mann, M. Panchenko, & P. Zarka (Eds.), Planetary radio emissions viii (pp. 59–72). https://doi.org/10.1553/PRE8s59
Louis, C. K., Hess, S. L. G., Cecconi, B., Zarka, P., Lamy, L., Aicardi, S., & Loh, A. (2019). ExPRES: An exoplanetary and planetary radio emissions simulator. A&A, 627, A30. https://doi.org/10.1051/0004-6361/201935161
Louis, C. K., Hess, S. L. G., Cecconi, B., Zarka, P., Lamy, L., Aicardi, S., & Loh, A. (2023). maserlib/expres: Version 1.2.0. Zenodo. (This work has also been supported by the EPN-2024-RI (Europlanet 2024 Research Infrastructure) project, under contract number 871149 with the EC.). https://doi.org/10.5281/zenodo.7759511
Louis, C. K., Lamy, L., Zarka, P., Cecconi, B., & Hess, S. L. G. (2017). Detection of Jupiter decametric emissions controlled by Europa and Ganymede with voyager/PRA and Cassini/RPWS. Journal of Geophysical Research (Space Physics), 122(9), 9228–9247. https://doi.org/10.1002/2016JA023779
Louis, C. K., Lamy, L., Zarka, P., Cecconi, B., Imai, M., Kurth, W. S., et al. (2017). Io-Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations. Geophysical Research Letters, 44(18), 9225–9232. https://doi.org/10.1002/2017GL073036
Louis, C. K., Louarn, P., Allegrini, F., Kurth, W. S., & Szalay, J. R. (2020). Ganymede-induced decametric radio emission: In situ observations and measurements by Juno. Geophysical Research Letters, 47(20), e90021. https://doi.org/10.1029/2020GL090021
Louis, C. K., Zarka, P., Dabidin, K., Lampson, P. A., Magalhães, F. P., Boudouma, A., et al. (2021). Latitudinal beaming of Jupiter’s radio emissions from Juno/waves flux density measurements. Journal of Geophysical Research (Space Physics), 126(10), e29435. https://doi.org/10.1029/2021JA029435
Markwardt, C. B. (2009). Non-linear least-squares fitting in IDL with MPFIT. In D. A. Bohlender, D. Durand, & P. Dowler (Eds.), Astronomical data analysis software and systems xviii (Vol. 411, p. 251).
Marques, M. S., Zarka, P., Echer, E., Ryabov, V. B., Alves, M. V., Denis, L., & Coffre, A. (2017). Statistical analysis of 26 yr of observations of decametric radio emissions from Jupiter. A&A, 604, A17. https://doi.org/10.1051/0004-6361/201630025
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., et al. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361(6404), 774–777. https://doi.org/10.1126/science.aat1450
Neubauer, F. M. (1980). Nonlinear standing Alfven wave current system at Io-Theory. Journal of Geophysical Research, 85(A3), 1171–1178. https://doi.org/10.1029/JA085iA03p01171
Prangé, R., Rego, D., Southwood, D., Zarka, P., Miller, S., & Ip, W. (1996). Rapid energy dissipation and variability of the lo-Jupiter electrodynamic circuit. Nature, 379(6563), 323–325. https://doi.org/10.1038/379323a0
Promfu, T., Nichols, J. D., Wannawichian, S., Clarke, J. T., Vogt, M. F., & Bonfond, B. (2022). Ganymede’s auroral footprint latitude: Comparison with magnetodisc model. Journal of Geophysical Research (Space Physics), 127(12), e2022JA030712. https://doi.org/10.1029/2022JA030712
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. A&A, 552, A119. https://doi.org/10.1051/0004-6361/201118179
Steffl, A. J., Delamere, P. A., & Bagenal, F. (2006). Cassini UVIS observations of the Io plasma torus. III. Observations of temporal and azimuthal variability. Icarus, 180(1), 124–140. https://doi.org/10.1016/j.icarus.2005.07.013
Su, Y.-J., Ergun, R. E., Bagenal, F., & Delamere, P. A. (2003). Io-related Jovian auroral arcs: Modeling parallel electric fields. Journal of Geophysical Research (Space Physics), 108(A2), 1094. https://doi.org/10.1029/2002JA009247
Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S., Gurnett, D. A., Imai, M., et al. (2020). Wave-particle interactions associated with Io’s auroral footprint: Evidence of Alfvén, ion cyclotron, and whistler modes. Geophysical Research Letters, 47(22), e88432. https://doi.org/10.1029/2020GL088432
Sulaiman, A. H., Szalay, J. R., Clark, G., Allegrini, F., Bagenal, F., Brennan, M. J., et al. (2023). Poynting fluxes, field-aligned current densities, and the efficiency of the io-jupiter electrodynamic interaction. https://doi.org/10.22541/essoar.167768118.88908828/v1
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020a). Alfvénic acceleration sustains Ganymede’s footprint tail aurora, 47(3), e86527. https://doi.org/10.1029/2019GL086527
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020b). A new framework to explain changes in Io’s footprint tail electron fluxes. Geophysical Research Letters, 47(18), e89267. https://doi.org/10.1029/2020GL089267
Szalay, J. R., Bagenal, F., Allegrini, F., Bonfond, B., Clark, G., Connerney, J. E. P., et al. (2020). Proton acceleration by Io’s Alfvénic interaction. Journal of Geophysical Research (Space Physics), 125(1), e27314. https://doi.org/10.1029/2019JA027314
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., et al. (2018). In situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research: Planets, 123(11), 3061–3077. https://doi.org/10.1029/2018JE005752
Thomas, N., Bagenal, F., Hill, T. W., & Wilson, J. K. (2004). The Io neutral clouds and plasma torus. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. the planet, satellites and magnetosphere (pp. 561–591).
Treumann, R. A. (2006). The electron-cyclotron maser for astrophysical application. The Astronomy and Astrophysics Review, 13(4), 229–315. https://doi.org/10.1007/s00159-006-0001-y
Tsuchiya, F., Yoshioka, K., Kimura, T., Koga, R., Murakami, G., Yamazaki, A., et al. (2018). Enhancement of the Jovian magnetospheric plasma circulation caused by the change in plasma supply from the satellite Io. Journal of Geophysical Research (Space Physics), 123(8), 6514–6532. https://doi.org/10.1029/2018JA025316
Vogt, M. F., Bagenal, F., & Bolton, S. J. (2022). Magnetic field conditions upstream of Ganymede. Journal of Geophysical Research (Space Physics), 127(12), e2022JA030497. https://doi.org/10.1029/2022JA030497
Vogt, M. F., Rutala, M., Bonfond, B., Clarke, J. T., Moore, L., & Nichols, J. D. (2022). Variability of Jupiter’s main auroral emission and satellite footprints observed with hst during the galileo era. Journal of Geophysical Research: Space Physics, 127(2), e2021JA030011. https://doi.org/10.1029/2021JA030011
Wannawichian, S., Clarke, J. T., Bagenal, F., Smyth, W. H., Peterson, C. A., & Nichols, J. D. (2013). Longitudinal modulation of the brightness of Io’s auroral footprint emission: Comparison with models. Journal of Geophysical Research (Space Physics), 118(6), 3336–3345. https://doi.org/10.1002/jgra.50346
Wu, C. S. (1985). Kinetic cyclotron and synchrotron maser instabilities: Radio emission processes by direct amplification of radiation. Space Science Reviews, 41(3–4), 215–298. https://doi.org/10.1007/BF00190653
Wu, C. S., & Lee, L. C. (1979). A theory of the terrestrial kilometric radiation. The Astrophysical Journal, 230, 621–626. https://doi.org/10.1086/157120
Yoneda, M., Kagitani, M., Tsuchiya, F., Sakanoi, T., & Okano, S. (2015). Brightening event seen in observations of Jupiter’s extended sodium nebula. Icarus, 261, 31–33. https://doi.org/10.1016/j.icarus.2015.07.037
Yoshikawa, I., Suzuki, F., Hikida, R., Yoshioka, K., Murakami, G., Tsuchiya, F., et al. (2017). Volcanic activity on Io and its influence on the dynamics of the Jovian magnetosphere observed by EXCEED/Hisaki in 2015. Earth Planets and Space, 69(1), 110. https://doi.org/10.1186/s40623-017-0700-9
Yoshikawa, I., Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kagitani, M., et al. (2014). Extreme ultraviolet radiation measurement for planetary atmospheres/magnetospheres from the Earth-orbiting spacecraft (extreme ultraviolet spectroscope for exospheric dynamics: EXCEED). Space Science Reviews, 184(1–4), 237–258. https://doi.org/10.1007/s11214-014-0077-z