Abstract :
[fr] L’utilisation de systèmes d’agitation orbitaux en Erlenmeyer est une étape clé dans le développement des procédés biotechnologiques en vue de leur industrialisation (formulation, culture cellulaire et microalgale, …). En effet, la simplicité de ce type de dispositif permet de réaliser rapidement le screening de conditions opératoires pour l’optimisation de procédés. Il est également une étape importante lors de la montée en échelle des cultures de cellules ou de microalgues. Pour la culture de microalgues, tout comme dans le cas de nombreuses autres types de cultures biologiques, les rendements atteints en Erlenmeyer sont cependant difficilement transposables lors de la montée en échelle dans des réacteurs industriels. C’est notamment dû au fait que les phénomènes de mélange et de transfert gazeux au sein des Erlenmeyers ne sont pas parfaitement maitrisés, de sorte que leur impact éventuel sur les résultats obtenus au laboratoire ne peut pas être pris en compte lors de la montée en échelle.
Durant les deux dernières décennies, un grand nombre de travaux ont été réalisés sur la caractérisation des conditions hydrodynamiques (mélange, puissance dissipée, cisaillement, …) et la qualité des transferts au sein d’Erlenmeyers fixés sur une table orbitale (déformation de la surface, kLa, …), que ce soit de manière expérimentale [1-3] et/ou numérique [4-6].
Néanmoins, devant la complexité liée à la géométrie d’un Erlenmeyer et, surtout, de son mouvement sur une table d’agitation orbitale, la caractérisation des phénomènes de transport et de transfert reste difficile. Afin de concevoir des modèles numériques permettant de prédire ces phénomènes pour ensuite extrapoler les conditions opératoires optimales dans différentes géométries et à différentes échelles, il est nécessaire d’avoir des données expérimentales globales et locales. Si les données relatives aux grandeurs globales sont disponibles au sein de la littérature [2,5] (kLa, puissance dissipée, …), les données locales disponibles ne sont pas directement applicables car elles sont obtenues sur des géométries simplifiées, i.e., dans des réacteurs cylindriques à fond plat [3-4].
Dans ce travail (qui s’inscrit dans le projet FEDER AlgaeFactory_Usinalgue), un banc expérimental a été conçu afin de permettre la caractérisation par PIV/PLIF de l’hydrodynamique et des transferts à la surface au sein d’un Erlenmeyer de 250ml rempli à 50 et 100ml. L’agitation est réalisée à 110 RPM sur une table orbitale (Heidolph Unimax 2010) d’amplitude orbitale de 2 cm. La caméra (Dantec Flow Sense EO 4M S) et l’Erlenmeyer sont disposés tous les deux sur la table orbitale afin que la caméra suive le mouvement orbital de l’Erlenmeyer. Les Lasers pulsé (Pulse YAG 2x65mj/532 nm 15Hz) et continu (Coherent MTM 5W/532 nm) sont disposés hors de la table orbitale. Un miroir disposé à 45° sous l’Erlenmeyer permet de réaliser des mesures soit sur des plans horizontaux lorsque que la vision de la caméra passe par le miroir et que le laser éclaire directement un plan horizontal de l’Erlenmeyer, soit sur un plan vertical lorsque que le plan laser est réfléchi par le miroir (Figure 1). Afin de compenser la déformation optique due aux courbures de l’erlenmeyer, ce dernier est placé dans un aquarium rempli d’un fluide transparent dont l’indice de réfraction a été choisi de manière à limiter la variation d’indice avec les parois de l’Erlenmeyer. Enfin, pour empêcher le déplacement de l’Erlenmeyer au sein de l’aquarium (mouvement orbital et tangage du fluide) ainsi que le tangage du fluide au sein de l’aquarium, l’Erlenmeyer est maintenu en place grâce à une mousse épousant ses contours qui repose à la surface du liquide au sein de l’aquarium.