Animals; Genomics/methods; Medicago sativa/genetics; Phylogeny; Aphids/genetics; Chromosomes, Insect; Genome, Insect; Aphids; Genomics; Medicago sativa; Statistics and Probability; Information Systems; Education; Computer Science Applications; Statistics, Probability and Uncertainty; Library and Information Sciences
Abstract :
[en] The spotted alfalfa aphid (SAA, Therioaphis trifolii) (Hemiptera: Aphididae) is a destructive pest of cultivated alfalfa (Medicago sativa L.) that leads to large financial losses in the livestock industry around the world. Here, we present a chromosome-scale genome assembly of T. trifolii, the first genome assembly for the aphid subfamily Calaphidinae. Using PacBio long-read sequencing, Illumina sequencing, and Hi-C scaffolding techniques, a 541.26 Mb genome was generated, with 90.01% of the assembly anchored into eight scaffolds, and the contig and scaffold N50 are 2.54 Mb and 44.77 Mb, respectively. BUSCO assessment showed a completeness score of 96.6%. A total of 13,684 protein-coding genes were predicted. The high-quality genome assembly of T. trifolii not only provides a genomic resource for the more complete analysis of aphid evolution, but also provides insights into the ecological adaptation and insecticide resistance of T. trifolii.
Disciplines :
Entomology & pest control
Author, co-author :
Huang, Tianyu ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China ; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
Liu, Yang; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
He, Kang; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Wang, Bing ; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. wangbing02@caas.cn
Wang, Guirong ; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. wangguirong@caas.cn ; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China. wangguirong@caas.cn
Language :
English
Title :
Chromosome-level genome assembly of the spotted alfalfa aphid Therioaphis trifolii.
This study was supported by a grant from Shenzhen Science and Technology Program (Grant No. KQTD20180411143628272) and the National Natural Science Foundation of China (31872039), Major special projects for green pest control (110202201017(LS-01)), and the Central Public-interest Scientific Institution Basal Research Fund (CAASZDRW202108) and the Agricultural Science and Technology Innovation Program.
Radović, J., Sokolović, D. & Marković, J. Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol. Anim. Husb. 25, 465–475 (2009). DOI: 10.2298/BAH0906465R
Frank, D. et al. Impact of brassica and lucerne finishing feeds and intramuscular fat on lamb eating quality and flavor. A cross-cultural study using Chinese and non-Chinese Australian consumers. J. Agric. Food Chem. 64, 6856–6868 (2016). DOI: 10.1021/acs.jafc.6b02018
Bai, Z. et al. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 4, eaar8534 (2018). DOI: 10.1126/sciadv.aar8534
Blackman, R. L. & Eastop, V. F. Aphids on the world’s crops (John Wiley and Sons, Chichester, 2000).
Dickson, R., Laird, E. & Pesho, G. The spotted alfalfa aphid (yellow clover aphid on alfalfa). Hilgardia 24, 93–118 (1955). DOI: 10.3733/hilg.v24n05p093
Lake, A. Spotted alfalfa aphid survival and reproduction on annual medics with various levels of aphid resistance. Aust. J. Agric. Res. 40, 117–123 (1989). DOI: 10.1071/AR9890117
Wang, L. et al. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China. Agric. Water Manag. 243, (2020).
Jones, R. A. C. Occurrence of virus infection in seed stocks and 3-year-old pastures of lucerne (Medicago sativa). Aust. J. Agric. Res. 55, 757–764 (2004). DOI: 10.1071/AR04011
He, C. G. & Zhang, X. G. Field evaluation of lucerne (Medicago sativa L.) for resistance to aphids in northern China. Aust. J. Agric. Res. 57, 471–475 (2006). DOI: 10.1071/AR05255
Irwin, J. A. G., Lloyd, D. L. & Lowe, K. F. Lucerne biology and genetic improvement - an analysis of past activities and future goals in Australia. Aust. J. Agric. Res. 52, 699–712 (2001). DOI: 10.1071/AR00181
Bass, C. et al. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51, 41–51 (2014). DOI: 10.1016/j.ibmb.2014.05.003
Lokeshwari, D., Krishna Kumar, N. K. & Manjunatha, H. Multiple mutations on the second acetylcholinesterase gene associated with dimethoate resistance in the melon aphid, Aphis gossypii (Hemiptera: Aphididae). J. Econ. Entomol. 109, 887–897 (2016). DOI: 10.1093/jee/tov403
Chen, A., Zhang, H., Shan, T., Shi, X. & Gao, X. The overexpression of three cytochrome P450 genes CYP6CY14, CYP6CY22 and CYP6UN1 contributed to metabolic resistance to dinotefuran in melon/cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol. 167, 104601 (2020). DOI: 10.1016/j.pestbp.2020.104601
Pym, A. et al. Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae. Insect Biochem. Mol. Biol. 143, 103743 (2022). DOI: 10.1016/j.ibmb.2022.103743
Wang, L. et al. Overexpression of ATP-binding cassette transporters associated with sulfoxaflor resistance in Aphis gossypii glover. Pest Manag. Sci. 77, 4064–4072 (2021). DOI: 10.1002/ps.6431
Smith, C. M. & Chuang, W. P. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag. Sci. 70, 528–540 (2014). DOI: 10.1002/ps.3689
Kamphuis, L. G. et al. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula. J. Exp. Bot. 64, 5157–5172 (2013). DOI: 10.1093/jxb/ert305
Jacques, S. et al. A functional genomics approach to dissect spotted alfalfa aphid resistance in Medicago truncatula. Sci. Rep. 10, 22159 (2020). DOI: 10.1038/s41598-020-78904-z
Zhao, H. et al. Inhibitory effects of plant trypsin inhibitors Msti-94 and Msti-16 on Therioaphis trifolii (Monell) (Homoptera: Aphididae) in alfalfa. Insects 10, 154 (2019). DOI: 10.3390/insects10060154
Bansal, R., Mian, M. A., Mittapalli, O. & Michel, A. P. RNA-Seq reveals a xenobiotic stress response in the soybean aphid, Aphis glycines, when fed aphid-resistant soybean. BMC Genomics 15, 972 (2014). DOI: 10.1186/1471-2164-15-972
Li, Y., Park, H., Smith, T. E. & Moran, N. A. Gene family evolution in the pea aphid based on chromosome-level genome assembly. Mol. Biol. Evol. 36, 2143–2156 (2019). DOI: 10.1093/molbev/msz138
Mathers, T. C. et al. Chromosome-scale genome assemblies of aphids reveal extensively rearranged autosomes and long-term conservation of the X chromosome. Mol. Biol. Evol. 38, 856–875 (2021). DOI: 10.1093/molbev/msaa246
Jiang, X. et al. A chromosome-level draft genome of the grain aphid Sitobion miscanthi. Gigascience 8, giz101 (2019). DOI: 10.1093/gigascience/giz101
Chen, W. et al. Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch). Gigascience 8, giz033 (2019). DOI: 10.1093/gigascience/giz033
Wenger, J. A. et al. Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochem. Mol. Biol. 123, 102917 (2020). DOI: 10.1016/j.ibmb.2017.01.005
International Aphid Genomics, C. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8, e1000313 (2010). DOI: 10.1371/journal.pbio.1000313
Emden, H. F. V. Harrington, R. Aphids as crop pests. (CAB International, 2017).
Julca, I. et al. Phylogenomics identifies an ancestral burst of gene duplications predating the diversification of aphidomorpha. Mol. Biol. Evol. 37, 730–756 (2020). DOI: 10.1093/molbev/msz261
Biello, R. et al. A chromosome-level genome assembly of the woolly apple aphid, Eriosoma lanigerum Hausmann (Hemiptera: Aphididae). Mol. Ecol. Resour. 21, 316–326 (2021). DOI: 10.1111/1755-0998.13258
Favret, C. Aphid species file http://Aphid.SpeciesFile.org (2013).
Nebreda, M. et al. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus. Virus Res. 100, 83–88 (2004). DOI: 10.1016/j.virusres.2003.12.016
Herbert, J. J., Mizell, R. F. 3rd & McAuslane, H. J. Host preference of the crapemyrtle aphid (Hemiptera: Aphididae) and host suitability of crapemyrtle cultivars. Environ. Entomol. 38, 1155–1160 (2009). DOI: 10.1603/022.038.0423
Liu, Y. et al. Apolygus lucorum genome provides insights into omnivorousness and mesophyll feeding. Mol. Ecol. Resour. 21, 287–300 (2020). DOI: 10.1111/1755-0998.13253
Huang, T. et al. Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum. J. Integr. Agric. 21, 1414–1423 (2022). DOI: 10.1016/S2095-3119(20)63577-8
Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018). DOI: 10.1093/bioinformatics/bty560
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011). DOI: 10.1093/bioinformatics/btr011
Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016). DOI: 10.1038/nmeth.4035
Liu, H., Wu, S., Li, A. & Ruan, J. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, gigabyte15 (2021). DOI: 10.46471/gigabyte.15
Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012). DOI: 10.1186/1471-2105-13-238
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). DOI: 10.1093/bioinformatics/btp324
Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020). DOI: 10.1093/bioinformatics/btz891
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). DOI: 10.1038/nmeth.1923
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015). DOI: 10.1186/s13059-015-0831-x
Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol 31, 1119–1125 (2013). DOI: 10.1038/nbt.2727
Sunnucks, P. et al. Biological and genetic characterization of morphologically similar Therioaphis trifolii (Hemiptera: Aphididae) with different host utilization. Bull. Entomol. Res. 87, 425–436 (1997). DOI: 10.1017/S0007485300037433
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999). DOI: 10.1093/nar/27.2.573
Han, Y. & Wessler, S. R. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199 (2010). DOI: 10.1093/nar/gkq862
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015). DOI: 10.1186/s13100-015-0041-9
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). DOI: 10.1093/bioinformatics/bts635
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019). DOI: 10.1186/s13059-019-1910-1
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008). DOI: 10.1186/gb-2008-9-1-r7
Tang, S., Lomsadze, A. & Borodovsky, M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78 (2015). DOI: 10.1093/nar/gkv227
Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008). DOI: 10.1093/bioinformatics/btn013
Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89 (2016). DOI: 10.1093/nar/gkw092
Zdobnov, E. M. & Apweiler, R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001). DOI: 10.1093/bioinformatics/17.9.847
Mathers, T. C. Improved Genome Assembly and Annotation of the Soybean Aphid (Aphis glycines Matsumura). G3 (Bethesda) 10, 899–906 (2020). DOI: 10.1534/g3.119.400954
Nicholson, S. J. et al. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics 16, 429 (2015). DOI: 10.1186/s12864-015-1525-1
Thorpe, P., Escudero-Martinez, C. M., Cock, P. J. A., Eves-van den Akker, S. & Bos, J. I. B. Shared transcriptional control and disparate gain and loss of aphid parasitism genes. Genome Biol. Evol. 10, 2716–2733 (2018). DOI: 10.1093/gbe/evy183
Mathers, T. C., Mugford, S. T., Hogenhout, S. A. & Tripathi, L. Genome sequence of the banana Aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) and its symbionts. G3 (Bethesda) 10, 4315–4321 (2020). DOI: 10.1534/g3.120.401358
Xie, W., He, C., Fei, Z. & Zhang, Y. Chromosome-level genome assembly of the greenhouse whitefly (Trialeurodes vaporariorum Westwood). Mol. Ecol. Resour. 20, 995–1006 (2020). DOI: 10.1111/1755-0998.13159
Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015). DOI: 10.1186/s13059-015-0721-2
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019). DOI: 10.1186/s13059-019-1832-y
Emms, D. M. & Kelly, S. STRIDE: species tree root inference from gene duplication events. Mol. Biol. Evol. 34, 3267–3278 (2017). DOI: 10.1093/molbev/msx259
Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002). DOI: 10.1093/oxfordjournals.molbev.a003974
De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006). DOI: 10.1093/bioinformatics/btl097
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015). DOI: 10.1038/nmeth.3176
Xu, L. et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, w52–w58 (2019). DOI: 10.1093/nar/gkz333
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012). DOI: 10.1093/nar/gkr1293
Huang, T. et al. Supplymentary data for chromosome-level genome assembly of the spotted alfalfa aphid. Therioaphis trifolii. Zenodo 10.5281/zenodo.7700460 (2023).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). DOI: 10.1093/bioinformatics/btp352
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015). DOI: 10.1093/bioinformatics/btv351
Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007). DOI: 10.1093/bioinformatics/btm071