Cyflumetofen; Enantioselective toxicity; Estrogen; Honeybees; MCF-7; Acaricides; cyflumetofen; Pesticides; Propionates; Proteins; Bees; Animals; Stereoisomerism; Propionates/analysis; Acaricides/toxicity; Pesticides/chemistry; Acaricide; Enantioselective; Honeybee; MCF-7 cells; Non-target organism; Oestrogens; Target organism; Environmental Engineering; Environmental Chemistry; Chemistry (all); Pollution; Public Health, Environmental and Occupational Health; Health, Toxicology and Mutagenesis; General Medicine; General Chemistry
Abstract :
[en] Cyflumetofen (CYF), a novel chiral acaricide, exert enantiomer-specific effects on target organisms by binding to glutathione S-transferase. However, there is limited knowledge regarding the response of non-target organisms to CYF, including enantioselective toxicity. In this study, we investigated the effects of racemic CYF (rac-CYF) and its two enantiomers (+)-CYF and (-)-CYF on MCF-7 cells and non-target (honeybees) and target (bee mites and red spider mites) organisms. The results showed that similar to estradiol, 1 μM (+)-CYF promoted the proliferation and disturbed the redox homeostasis of MCF-7 cells, whereas at high concentrations (≥100 μM) it exerted a negative effect on cell viability that was substantially stronger than that of (-)-CYF or rac-CYF. (-)-CYF and rac-CYF at 1 μM concentration did not significantly affect cell proliferation, but caused cell damage at high concentrations (≥100 μM). Analysis of acute CYF toxicity against non-target and target organisms revealed that for honeybees, all CYF samples had high lethal dose (LD50) values, indicating low toxicity. In contrast, for bee mites and red spider mites, LD50 values were low, whereas those of (+)-CYF were the lowest, suggesting higher toxicity of (+)-CYF than that of the other CYF samples. Proteomics profiling revealed potential CYF-targeted proteins in honeybees related to energy metabolism, stress responses, and protein synthesis. Upregulation of estrogen-induced FAM102A protein analog indicated that CYF might exert estrogenic effects by dysregulating estradiol production and altering estrogen-dependent protein expression in bees. Our findings suggest that CYF functions as an endocrine disruptor in non-target organisms in an enantiomer-specific manner, indicating the necessity for general ecological risk assessment for chiral pesticides.
Disciplines :
Agriculture & agronomy
Author, co-author :
Zhang, Yifan; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Kong, Zhiqiang; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
Noël, Grégoire ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Li, Lin; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Yang, Lin; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Zhao, Mengying; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Jin, Nuo; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Wang, Fengzhong; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Fan, Bei; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Li, Minmin ; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China. Electronic address: liminmin@caas.cn
Language :
English
Title :
Enantioselective activity and toxicity of chiral acaricide cyflumetofen toward target and non-target organisms.
This study was supported by the National Key Research and Development Program of China [grant number 2022YFF1102200 ], the National Natural Science Foundation of China [grant number 31872006 and 32272443 ], and the Youth Innovation of Chinese Academy of Agricultural Sciences ( Y2022QC12 ).
Al Wafai, R., El-Rabih, W., Katerji, M., Safi, R., El Sabban, M., El-Rifai, O., Usta, J., Chemosensitivity of MCF-7 cells to eugenol: release of cytochrome-c and lactate dehydrogenase. Sci. Rep., 7(1), 2017, 43730, 10.1038/srep43730.
Beaulieu, R., Grand, E., Stasik, I., Attoumbré, J., Chesnais, Q., Gobert, V., Ameline, A., Giordanengo, P., Kovensky, J., Synthesis and insecticidal activities of novel solanidine derivatives. Pest Manag. Sci. 75:3 (2019), 793–800, 10.1002/ps.5180.
Burke, R.E., Harris, S.C., McGuire, W.L., Lactate dehydrogenase in estrogen-responsive human breast cancer cells. Cancer Res. 38:9 (1978), 2773–2776.
Chen, X., Zheng, J., Zhang, J., Duan, M., Xu, H., Zhao, W., Yang, Y., Wang, C., Xu, Y., Exposure to difenoconazole induces reproductive toxicity in zebrafish by interfering with gamete maturation and reproductive behavior. Sci. Total Environ., 838, 2022, 155610.
Contini, A., Di Bello, D., Azzarà, A., Giovanelli, S., D'Urso, G., Piaggi, S., Pinto, B., Pistelli, L., Scarpato, R., Testi, S., Assessing the cytotoxic/genotoxic activity and estrogenic/antiestrogenic potential of essential oils from seven aromatic plants. Food Chem. Toxicol., 138, 2020, 111205.
Duan, J., Sun, M., Shen, Y., Gao, B., Zhang, Z., Gao, T., Wang, M., Enantioselective acute toxicity and bioactivity of carfentrazone-ethyl enantiomers. Bull. Environ. Contam. Toxicol. 101 (2018), 651–656.
European Food Safety Authority. A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors. EFSA Supporting Publications, 13(7), 2016, 1069E, 10.2903/sp.efsa.2016.EN-1069.
Fenner, K., Canonica, S., Wackett, L.P., Elsner, M., Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:6147 (2013), 752–758, 10.1126/science.1236281.
Garey, J., Wolff, M.S., Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochem. Biophys. Res. Commun. 251:3 (1998), 855–859, 10.1006/bbrc.1998.9569.
Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L., Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 2015, 1255957, 10.1126/science.1255957.
Hu, F., Li, L., Wang, C., Zhang, Q., Zhang, X., Zhao, M., Enantioselective induction of oxidative stress by permethrin in rat adrenal pheochromocytoma (PC12) cells. Environ. Toxicol. Chem. 29 (2010), 683–690.
Kim, J.W., You, J., Protein target quantification decision tree. International Journal of Proteomics, 2013, 2013, 701247, 10.1155/2013/701247 701247.
Kiyama, R., Wada-Kiyama, Y., Estrogenic endocrine disruptors: molecular mechanisms of action. Environ. Int. 83 (2015), 11–40, 10.1016/j.envint.2015.05.012.
Lemini, C., Estela Avila, M., Medina, M., Sánchez, C., Figueroa, A., García-Mondragón, M.J., Vargas-Vázquez, A., Jiménez-Orozco, A., Proliferative properties of 17β-aminoestrogens in MCF-7 human breast cancer cells. Basic Clin. Pharmacol. Toxicol. 120:3 (2017), 235–242, 10.1111/bcpt.12674.
Li, M., Liu, X., Dong, F., Xu, J., Qin, D., Zheng, Y., Determination of cyflumetofen residue in water, soil, and fruits by modified quick, easy, cheap, effective, rugged, and safe method coupled to gas chromatography/tandem mass spectrometry. J. Separ. Sci. 35:20 (2012), 2743–2749, 10.1002/jssc.201200349.
Liu, Y.-J., Qiao, N.-H., Diao, Q.-Y., Jing, Z., Vukanti, R., Dai, P.-L., Ge, Y., Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard Mater., 389, 2020, 121818, 10.1016/j.jhazmat.2019.121818.
Lu, J., Wu, Q., Yang, Q., Li, G., Wang, R., Liu, Y., Duan, C., Duan, S., He, X., Huang, Z., Peng, X., Yan, W., Jiang, J., Molecular mechanism of reproductive toxicity induced by beta-cypermethrin in zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 239, 2021, 108894.
Lumjuan, N., McCarroll, L., Prapanthadara, L.-a., Hemingway, J., Ranson, H., Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem. Mol. Biol. 35:8 (2005), 861–871, 10.1016/j.ibmb.2005.03.008.
Marcic, D., Acaricides in modern management of plant-feeding mites. J. Pest. Sci. 85:4 (2012), 395–408, 10.1007/s10340-012-0442-1.
Pavlidi, N., Khalighi, M., Myridakis, A., Dermauw, W., Wybouw, N., Tsakireli, D., Stephanou, E.G., Labrou, N.E., Vontas, J., Van Leeuwen, T., A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochem. Mol. Biol. 80 (2017), 101–115, 10.1016/j.ibmb.2016.12.003.
Pinto, P.I.S., Estêvão, M.D., Power, D.M., Effects of estrogens and estrogenic disrupting compounds on fish mineralized tissues. Mar. Drugs, 2014, 4474–4494, 10.3390/md12084474.
Qian, H., Hu, H., Mao, Y., Ma, J., Zhang, A., Liu, W., Fu, Z., Enantioselective phytotoxicity of the herbicide imazethapyr in rice. Chemosphere 76 (2009), 885–892.
Quan, R., Li, M., Liu, Y., Jin, N., Zhang, J., Li, R., Wang, F., Wang, Z., Francis, F., Kong, Z., Fan, B., Residues and enantioselective behavior of cyflumetofen from apple production. Food Chem., 321, 2020, 126687, 10.1016/j.foodchem.2020.126687.
Roat, T., dos Santos-Pinto, J., Dos Santos, L., Santos, K., Malaspina, O., Palma, M., Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub‐lethal doses of the insecticide fipronil. Ecotoxicology 23:9 (2014), 1659–1670, 10.1007/s10646-014-1305-8.
Rundlöf, M., Andersson, G.K., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., Jonsson, O., Klatt, B.K., Pedersen, T.R., Yourstone, J., Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 521(7550), 2015, 77, 10.1038/nature14420.
Sun, D., Pang, J., Zhou, Z., Jiao, B., Enantioselective environmental behavior and cytotoxicity of chiral acaricide cyflumetofen. Chemosphere 161 (2016), 167–173, 10.1016/j.chemosphere.2016.06.087.
Sun, M., Liu, D., Dang, Z., Li, R., Zhou, Z., Wang, P., Enantioselective behavior of malathion enantiomers in toxicity to beneficial organisms and their dissipation in vegetables and crops. J. Hazard Mater. 237–238 (2012), 140–146, 10.1016/j.jhazmat.2012.08.021.
Tannu, N.S., Hemby, S.E., Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat. Protoc. 1:4 (2006), 1732–1742, 10.1038/nprot.2006.256.
Ullah, M.S., Gotoh, T., Laboratory-based toxicity of some acaricides to Tetranychus macfarlanei and Tetranychus truncatus (Acari: tetranychidae). Int. J. Acarol 39:3 (2013), 244–251, 10.1080/01647954.2012.758655.
Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R., Dermauw, W., The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic. Biochem. Physiol. 121 (2015), 12–21, 10.1016/j.pestbp.2014.12.009.
Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., Brunet, J.-L., Texier, C., Biron, D.G., Blot, N., El Alaoui, H., Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One, 6(6), 2011, e21550, 10.1371/journal.pone.0021550.
Wang, D.-Y., Fulthorpe, R., Liss, S.N., Edwards, E.A., Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol. Endocrinol. 18:2 (2004), 402–411, 10.1210/me.2003-0202.
Wang, Y., Zhao, S., Shi, L., Xu, Z., He, L., Resistance selection and biochemical mechanism of resistance against cyflumetofen in Tetranychus cinnabarinus (Boisduval). Pestic. Biochem. Physiol. 111 (2014), 24–30, 10.1016/j.pestbp.2014.04.004.
Yang, B., Lin, X., Yu, N., Gao, H., Zhang, Y., Liu, W., Liu, Z., Contribution of glutathione S-transferases to imidacloprid resistance in nilaparvata lugens. J. Agric. Food Chem. 68:52 (2020), 15403–15408, 10.1021/acs.jafc.0c05763.
Zhao, H., Li, G., Cui, X., Wang, H., Liu, Z., Yang, Y., Xu, B., Review on effects of some insecticides on honey bee health. Pestic. Biochem. Physiol., 188, 2022, 105219, 10.1016/j.pestbp.2022.105219.
Zhao, M., Zhang, Y., Liu, W., Xu, C., Wang, L., Gan, J., Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line. Environ. Toxicol. Chem. 27:5 (2008), 1194–1200, 10.1897/07-482.1.
Ziegelmann, B., Abele, E., Hannus, S., Beitzinger, M., Berg, S., Rosenkranz, P., Lithium chloride effectively kills the honey bee parasite Varroa destructor by a systemic mode of action. Sci. Rep., 8(1), 2018, 683, 10.1038/s41598-017-19137-5 683.