Use of supercritical CO2 for the sterilization of liposomes: Study of the influence of sterilization conditions on the chemical and physical stability of phospholipids and liposomes.
[en] The effects of four potential supercritical carbon dioxide (ScCO2) sterilization conditions on the chemical stability of 9 phospholipids and on the physicochemical characteristics of liposomes consisting of stable phospholipids, as well as their sterilization efficiency were evaluated. These conditions were : C1 (ScCO2/70 °C/150 bar/240 min), C2 (ScCO2/0.25 % water/ 0.15% H2O2/ 0.5% acetic anhydride/38° C/85 bar/45 min), C3 (ScCO2/0.08 % peracetic acid/35° C/104 bar/180 min) and C4 (ScCO2/200 ppm H2O2/40 °C/270 bar/90 min). The results showed for phospholipids, a significant increase in hydrolysis products of 3.77 to 14.50 % and an increase in oxidation index of 6.10 to 430.50 % with unsaturated phospholipids for all tested conditions while with saturated phospholipids, no significant degradation was observed. Concerning the liposome formulation, no change in dispersion color and no phospholipid degradation were observed. However, a decrease in liposome size from 126.90 nm to 111.80 nm, 96.27 nm, 99.60 nm and 109.13 nm and an increase in the PdI from 0.208 to 0.271, 0.233, 0.285, and 0.298 were found with conditions C1, C2, C3 and C4 respectively. For the sterilization efficiency, conditions C1, C2 and C3 achieved the required sterility assurance level (SAL) of 10-6 for liposomes.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Delma, Kouka Luc ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Penoy, Noémie ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Sakira, Abdoul Karim; Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale Sciences et Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03, Ouagadougou, Burkina Faso
EGREK, Sabrina ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Sacheli, Rosalie ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Grignard, Bruno ; Université de Liège - ULiège > Département de chimie (sciences) > Centre d'études et de recherches sur les macromolécules (CERM)
Hayette, Marie-Pierre ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Issa Somé, Touridomon; Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale Sciences et Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03, Ouagadougou, Burkina Faso
Evrard, Brigitte ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Semdé, Rasmané; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
Piel, Géraldine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Language :
English
Title :
Use of supercritical CO2 for the sterilization of liposomes: Study of the influence of sterilization conditions on the chemical and physical stability of phospholipids and liposomes.
Publication date :
11 January 2023
Journal title :
European Journal of Pharmaceutics and Biopharmaceutics
Authors would like to acknowledge the Academy for research and Higher Education- Development Cooperation Committee (ARES-CCD) for the financial support as well as the Professors Michel Frederich and Joëlle Leclercq for their invaluable material and technical assistance in the realization of this work.
C. Yang, L. Gong, X. Li, W. Li, X. Meng, B. Liu. Carboxymethyl chitosan coated alpha-linolenic acid nanoliposomes: Preparation, stability and release in vitro and in vivo, Food Chem. 404 (2023) 134526, doi: 10.1016/j.foodchem.2022.134526.
Toh, M.R., Chiu, G.N.C., Liposomes as sterile preparations and limitations of sterilization techniques in liposomal manufacturing. Asian J. Pharm. 8 (2013), 88–95, 10.1016/j.ajps.2013.07.011.
Mohammed, A.R., Weston, N., Coombes, A.G.A., Fitzgerald, M., Perrie, Y., Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. of Pharm. 285 (2004), 23–34, 10.1016/j.ijpharm.2004.07.010.
Allen, M.T., Cullis, R.P., Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 65 (2013), 36–48, 10.1016/j.addr.2012.09.037.
Pattni, S.B., Chupin, V.V., Torchilin, P.V., New developments in liposomal drug delivery. Chem. Rev. 115 (2015), 10938–10966, 10.1021/acs.chemrev.5b00046.
Reverchon, E., Della Porta, G., Adami, A., Medical device sterilization using supercritical CO2 based mixtures. Recent Pat. Chem. Eng., 3, 2010.
Delma, K.L., Lechanteur, A., Evrard, B., Semdé, R., Piel, G., Sterilization methods of liposomes: drawbacks of conventional methods and perspectives. Int. J. of Pharm., 597, 2021, 120271, 10.1016/j.ijpharm.2021.120271.
Delattre, L., Pharmaceutical applications of supercritical carbon dioxide. Ann. Pharm. Fr. 65 (2007), 58–67, 10.1016/s0003-4509(07)90017-6.
Kadimi, U.S., Balasubramanian, D.R., Ganni, U.R., Balaraman, M., Govindarajulu, V., In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide–mediated process. Nanomedicine 3 (2007), 273–280, 10.1016/j.nano.2007.08.003.
Bigazzi, W., Penoy, N., Evrard, B., Piel, G., Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem. Eng., 383, 2020, 123106, 10.1016/j.cej.2019.123106.
Leitgeb, M., Knez, Z., Primozic, M., Sustainable technologies for liposome preparation. J. Supercrit. Fluids, 165, 2020, 104984, 10.1016/j.supflu.2020.104984.
Penoy, N., Grignard, B., Evrard, B., Piel, G., A supercritical fluid technology for liposome production and comparison with the film hydration method. Int. J. of Pharm., 592, 2021, 120093, 10.1016/j.ijpharm.2020.120093.
Chaves, M.A., Baldino, L., Pinho, S.C., Reverchon, E., Co-encapsulation of curcumin and vitamin D3 in mixed phospholipid nanoliposomes using a continuous supercritical CO2 assisted process. J. Taiwan Inst. Chem. Eng., 132, 2022, 10.1016/j.jtice.2021.10.020.
Delma, K.L., Penoy, N., Grignard, B., Semdé, R., Evrard, B., Piel, G., Effects of supercritical carbon dioxide under conditions potentially conducive to sterilization on physicochemical characteristics of a liposome formulation containing apigenin. J. Supercrit. Fluids, 179, 2022, 105418, 10.1016/j.supflu.2021.105418.
Kikuchi, H., Carlsson, A., Yachi, K., Hirota, S., Possibility of heat sterilization of liposomes?. Chem. Pharm. Bull. 39:4 (1991), 1018–1022, 10.1248/cpb.39.1018.
Kwon, O.B., Kang, J.H., Lipid peroxidation induced by the cu, zn-superoxide dismutase and hydrogen peroxide system. Biochem. Mol. Biol. Int. 47:4 (1999), 645–653, 10.1080/15216549900201703.
Uchiyama, T., Kiritoshi, Y., Watanabe, J., Ishihara, K., Degradation of phospholipid polymer hydrogel by hydrogen peroxide aiming at insulin release device. Biomaterials 24 (2003), 5183–5190, 10.1016/S0142-9612(03)00441-1.
Kang, J.H., Lipid peroxidation induced by the reaction of cytochrome c with hydrogen peroxide. Bull. Korean Chem. Soc. 27:6 (2006), 830–834, 10.5012/bkcs.2006.27.6.830.
Colakoglu, A.S., Oxidation kinetics of soybean oil in the presence of monoolein, stearic acid and iron. Food Chem. 101 (2007), 724–728, 10.1016/j.foodchem.2006.01.049.
Grit, M., Crommelin, J.A., The effect of aging on the physical stability of liposome dispersions. Chem. Phys. Lipid 62 (1992), 113–122, 10.1016/0009-3084(92)90089-8.
Grit, M., Crommelin, J.A., Chemical-stability of liposomes: implications for their physical stability. Chem. Phys. Lipid 64 (1993), 3–18, 10.1016/0009-3084(93)90053-6.
Lutz, J., Augustin, A.J., Jager, L.J., Bachmann, D., Brandl, M., M., Acute toxicity and depression of phagocytosis in vivo by liposomes: influence of lysophosphatidylcholine. Life Sci. 56 (1995), 99–106, 10.1016/0024-3205(94)00930-9.
Sætern, A.M., Skar, M., Braaten, A., Brandl, M., Camptothecin-catalyzed phospholipid hydrolysis in liposomes. Int. J. Pharm. 288 (2005), 73–80, 10.1016/j.ijpharm.2004.09.010.
Karajanagi, S.S., Yoganathan, R., Mammucari, R., Park, H., Cox, J., Zeitels, S.M., Langer, R., Foster, N.R., Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol. Bioeng. 108 (2011), 1716–1725, 10.1002/bit.23105.
Bernhardt, A., Wehrl, M., Paul, B., Hochmuth, T., Schumacher, M., Schütz, K., Gelinsky, M., Improved sterilization of sensitive biomaterials with supercritical carbon dioxide at low temperature. PLoS One, 10(6), 2015, e0129205.
C.D. Burns, J.R. Humphrey, R.A. Eisenhut, W.T. Christensen, Sterilization of drugs using supercritical carbon dioxide sterilisant, US Patent, 8012414B2 (2011).
Donati, I., Benincasa, M., Foulc, M.P., Turco, G., Toppazzini, M., Solinas, D., Spilimbergo, S., Kikic, I., Paoletti, S., Terminal sterilization of BisGMA-TEGDMA thermoset materials and their bioactive surfaces by supercritical CO2. Biomacromolecules 13 (2012), 1152–1160, 10.1021/bm300053d.
Qi, N., Tang, X., Lin, X., Gu, P., Cai, C., Xu, H., He, H., Zhang, Y., Sterilization stability of vesicular phospholipid gels loaded with cytarabine for brain implant. Int. J. Pharm. 427 (2012), 234–241, 10.1016/j.ijpharm.2012.02.008.
Tardi, C., Drechsler, M., Bauer, K.H., Brandl, M., Steam sterilisation of vesicular phospholipid gels. Int. J. Pharm. 217 (2001), 161–172, 10.1016/S0378-5173(01)00605-6.
Vemuri, S., Rhodes, C.T., Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 70 (1995), 95–111, 10.1016/0031-6865(95)00010-7.
Siriwardane, D.A., Wang, C., Jiang, W., Mudalige, T., Quantification of phospholipid degradation products in liposomal pharmaceutical formulations by ultra performance liquid chromatographymass spectrometry (UPLC-MS). Int. J. Pharm., 578, 2020, 119077, 10.1016/j.ijpharm.2020.119077.
Soares, C.G., Learmonth, A.D., Vallejo, C.M., Perez Davila, S., Gonzalez, P., Sousa, A.R., Oliveira, A.L., Supercritical CO2 technology: the next standard sterilization technique?. Mat. Sci. Eng. C 99 (2019), 520–540, 10.1016/j.msec.2019.01.121.
Lesoin, L., Boutin, O., Crampon, C., Badens, E., CO2/water/surfactant ternary systems and liposome formation using supercritical CO2: a review. Colloids Surfaces A: Physicochem. Eng. Aspects 377 (2011), 1–14, 10.1016/j.colsurfa.2011.01.027.
Zhang, J., Dalal, N., Gleason, C., Matthews, A.M., Waller, L.N., Fox, K.F., Fox, A., Drews, M.J., LaBerge, M., An, Y.H., On the mechanisms of deactivation of Bacillus atrophaeus spores using supercritical carbon dioxide. J. Supercrit. Fluids 38 (2006), 268–273, 10.1016/j.supflu.2006.02.015.
Zhang, J., Dalal, N., Gleason, C., Matthews, A.M., Waller, L.N., Saunders, C., Fox, K.F., Fox, A., Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis. J. Microbiol. Methods 70 (2007), 442–451, 10.1016/j.mimet.2007.05.019.
Rao, L., Zhao, F., Wang, Y., Chen, F., Hu, X., Liao, X., Investigating the inactivation mechanism of Bacillus subtilis spores by high pressure CO2. Front. Microbiol. 7 (2016), 1–12, 10.3389/fmicb.2016.01411.
Setlow, B., Korza, G., Blatt, K.M.S., Fey, J.P., Setlow, P., Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid. J. Appl. Microbiol. 120:1 (2016), 57–69, 10.1111/jam.12995.
Penoy, N., Delma, K.L., Tonakpon, H.A., Grignard, B., Evrard, B., Piel, G., An innovative one step green supercritical CO2 process for the production of liposomes co-encapsulating both a hydrophobic and a hydrophilic compound for pulmonary administration. Int. J. Pharm., 627, 2022, 122212, 10.1016/j.ijpharm.2022.122212.