Kaimal, A. M.; Mujumdar, A. S.; Thorat, B. N. Resistant starch from millets: Recent developments and applications in food industries. Trends Food Sci. Technol. 2021, 111, 563- 580, 10.1016/j.tifs.2021.02.074
Ståhl, M.; Berghel, J.; Frodeson, S.; Granström, K.; Renström, R. Effects on pellet properties and energy use when starch is added in the wood-fuel pelletizing process. Energy Fuels 2012, 26, 1937- 1945, 10.1021/ef201968r
Falua, K. J.; Pokharel, A.; Babaei-Ghazvini, A.; Ai, Y.; Acharya, B. Valorization of starch to biobased materials: A review. Polymer 2022, 14, 2215, 10.3390/polym14112215
Chi, C.; Li, X.; Huang, S.; Chen, L.; Zhang, Y.; Li, L.; Miao, S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends Food Sci. Technol. 2021, 109, 154- 168, 10.1016/j.tifs.2021.01.024
Irshad, A.; Guo, H.; Rehman, S. U.; Wang, X.; Wang, C.; Raza, A.; Zhou, C.; Li, Y.; Liu, L. Soluble starch synthase enzymes in cereals: An updated review. Agronomy 2021, 11, 1983, 10.3390/agronomy11101983
DeMartino, P.; Cockburn, D. W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 2020, 61, 66- 71, 10.1016/j.copbio.2019.10.008
Kartal, Ö.; Ebenhöh, O. A generic rate law for surface-active enzymes. FEBS Lett. 2013, 587, 2882- 2890, 10.1016/j.febslet.2013.07.026
Warren, F. J.; Butterworth, P. J.; Ellis, P. R. The surface structure of a complex substrate revealed by enzyme kinetics and Freundlich constants for α-amylase interaction with the surface of starch. Biochim. Biophys. Acta, Gen. Subj. 2013, 1830, 3095- 3101, 10.1016/j.bbagen.2012.12.028
Pasqualone, A.; Costantini, M.; Labarbuta, R.; Summo, C. Production of extruded-cooked lentil flours at industrial level: Effect of processing conditions on starch gelatinization, dough rheological properties and techno-functional parameters. LWT 2021, 147, 111580 10.1016/j.lwt.2021.111580
Janeček, Š.; Svensson, B. How many α-amylase GH families are there in the CAZy database?. Amylase 2022, 6, 1- 10, 10.1515/amylase-2022-0001
Drula, E.; Garron, M. L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571- D577, 10.1093/nar/gkab1045
Lee, H. W.; Jeon, H. Y.; Choi, H. J.; Kim, N. R.; Choung, W. J.; Koo, Y. S.; Ko, D. S.; You, S. G.; Shim, J. H. Characterization and application of BiLA, a psychrophilic α-amylase from Bifidobacterium longum. J. Agric. Food Chem. 2016, 64, 2709- 2718, 10.1021/acs.jafc.5b05904
Sindhu, R.; Binod, P.; Madhavan, A.; Beevi, U. S.; Mathew, A. K.; Abraham, A.; Pandey, A.; Kumar, V. Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresour. Technol. 2017, 245, 1740- 1748, 10.1016/j.biortech.2017.04.098
Feller, G.; Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 2003, 1, 200- 208, 10.1038/nrmicro773
Warren, F. J.; Royall, P. G.; Gaisford, S.; Butterworth, P. J.; Ellis, P. R. Binding interactions of α-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydr. Polym. 2011, 86, 1038- 1047, 10.1016/j.carbpol.2011.05.062
Ueda, S. Fungal glucoamylases and raw starch digestion. Trends Biochem. Sci. 1981, 6, 89- 90, 10.1016/0968-0004(81)90032-3
Janeček, Š.; Mareček, F.; MacGregor, E. A.; Svensson, B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol. Adv. 2019, 37, 107451 10.1016/j.biotechadv.2019.107451
Paldi, T.; Levy, I.; Shoseyov, O. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem. J. 2003, 372, 905- 910, 10.1042/bj20021527
Cockburn, D.; Nielsen, M. M.; Christiansen, C.; Andersen, J. M.; Rannes, J. B.; Blennow, A.; Svensson, B. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation. Int. J. Biol. Macromol. 2015, 75, 338- 345, 10.1016/j.ijbiomac.2015.01.054
Southall, S. M.; Simpson, P. J.; Gilbert, H. J.; Williamson, G.; Williamson, M. P. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 1999, 447, 58- 60, 10.1016/S0014-5793(99)00263-X
Sorimachi, K.; Le Gal-Coëffet, M.-F.; Williamson, G.; Archer, D. B.; Williamson, M. P. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 1997, 5, 647- 661, 10.1016/S0969-2126(97)00220-7
Penninga, D.; Van Der Veen, B. A.; Knegtel, R. M. A.; Van Hijum, S. A. F. T.; Rozeboom, H. J.; Kalk, K. H.; Dijkstra, B. W.; Dijkhuizen, L. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J. Biol. Chem. 1996, 271, 32777- 32784, 10.1074/jbc.271.51.32777
Kamitori, S.; Kondo, S.; Okuyama, K.; Yokota, T.; Shimura, Y.; Tonozuka, T.; Sakano, Y. Crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Å resolution. J. Mol. Biol. 1999, 287, 907- 921, 10.1006/jmbi.1999.2647
Juge, N.; Nøhr, J.; Le Gal-Coëffet, M. F.; Kramhøft, B.; Furniss, C. S. M.; Planchot, V.; Archer, D. B.; Williamson, G.; Svensson, B. The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochim. Biophys. Acta, Proteins Proteomics 2006, 1764, 275- 284, 10.1016/j.bbapap.2005.11.008
Cockburn, D.; Wilkens, C.; Dilokpimol, A.; Nakai, H.; Lewińska, A.; Abou Hachem, M.; Svensson, B. Using carbohydrate interaction assays to reveal novel binding sites in carbohydrate active enzymes. PLoS One 2016, 11, e0160112 10.1371/journal.pone.0160112
Xiao, H.; Wang, S.; Xu, W.; Yin, Y.; Xu, D.; Zhang, L.; Liu, G. Q.; Luo, F.; Sun, S.; Lin, Q.; Xu, B. The study on starch granules by using darkfield and polarized light microscopy. J. Food Compos. Anal. 2020, 92, 103576 10.1016/j.jfca.2020.103576
Butterworth, P. J.; Bajka, B. H.; Edwards, C. H.; Warren, F. J.; Ellis, P. R. Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends Food Sci. Technol. 2022, 120, 254- 264, 10.1016/j.tifs.2021.11.015
Schnell, S. Validity of the Michaelis-Menten equation-steady-state or reactant stationary assumption: That is the question. FEBS J. 2014, 281, 464- 472, 10.1111/febs.12564
Govindaraju, I.; Chakraborty, I.; Baruah, V. J.; Sarmah, B.; Mahato, K. K.; Mazumder, N. Structure and morphological properties of starch macromolecule using biophysical techniques. Starch/Staerke 2021, 73, 2000030, 10.1002/star.202000030
Kari, J.; Andersen, M.; Borch, K.; Westh, P. An inverse Michaelis-Menten approach for interfacial enzyme kinetics. ACS Catal. 2017, 7, 4904- 4914, 10.1021/acscatal.7b00838
Eibinger, M.; Ganner, T.; Plank, H.; Nidetzky, B. A biological nanomachine at work: watching the cellulosome degrade crystalline cellulose. ACS Cent. Sci. 2020, 6, 739- 746, 10.1021/acscentsci.0c00050
Kari, J.; Olsen, J. P.; Jensen, K.; Badino, S. F.; Krogh, K. B. R. M.; Borch, K.; Westh, P. Sabatier principle for interfacial (heterogeneous) enzyme catalysis. ACS Catal. 2018, 8, 11966- 11972, 10.1021/acscatal.8b03547
Feller, G.; Payan, F.; Theys, F.; Qian, M.; Haser, R.; Gerday, C. Stability and structural analysis of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur. J. Biochem. 1994, 222, 441- 447, 10.1111/j.1432-1033.1994.tb18883.x
Gerday, C.; Aittaleb, M.; Bentahir, M.; Chessa, J. P.; Claverie, P.; Collins, T.; D’Amico, S.; Dumont, J.; Garsoux, G.; Georlette, D.; Hoyoux, A.; Lonhienne, T.; Meuwis, M. A.; Feller, G. Cold-adapted enzymes: From fundamentals to biotechnology. Trends Biotechnol. 2000, 18, 103- 107, 10.1016/S0167-7799(99)01413-4
Aghajari, N.; Feller, G.; Gerday, C.; Haser, R. Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 1998, 6, 1503- 1516, 10.1016/S0969-2126(98)00149-X
D’Amico, S.; Sohier, J. S.; Feller, G. Kinetics and energetics of ligand binding determined by microcalorimetry: Insights into active site mobility in a psychrophilic α-amylase. J. Mol. Biol. 2006, 358, 1296- 1304, 10.1016/j.jmb.2006.03.004
Giardina, T.; Gunning, A. P.; Juge, N.; Faulds, C. B.; Furniss, C. S. M.; Svensson, B.; Morris, V. J.; Williamson, G. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J. Mol. Biol. 2001, 313, 1149- 1159, 10.1006/jmbi.2001.5097
Christiansen, C.; Abou Hachem, M.; Glaring, M. A.; Viksø-Nielsen, A.; Sigurskjold, B. W.; Svensson, B.; Blennow, A. A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Lett. 2009, 583, 1159- 1163, 10.1016/j.febslet.2009.02.045
Blennow, A.; Wischmann, B.; Houborg, K.; Ahmt, T.; Jørgensen, K.; Engelsen, S. B.; Bandsholm, O.; Poulsen, P. Structure function relationships of transgenic starches with engineered phosphate substitution and starch branching. Int. J. Biol. Macromol. 2005, 36, 159- 168, 10.1016/j.ijbiomac.2005.05.006
Kozlov, S. S.; Blennow, A.; Krivandin, A. V.; Yuryev, V. P. Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. Int. J. Biol. Macromol. 2007, 40, 449- 460, 10.1016/j.ijbiomac.2006.11.001
Htoon, A.; Shrestha, A. K.; Flanagan, B. M.; Lopez-Rubio, A.; Bird, A. R.; Gilbert, E. P.; Gidley, M. J. Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydr. Polym. 2009, 75, 236- 245, 10.1016/j.carbpol.2008.06.016
Tian, Y.; Qu, J.; Zhou, Q.; Ding, L.; Cui, Y.; Blennow, A.; Zhong, Y.; Liu, X. High pressure/temperature pasting and gelling of starch related to multilevel structure-analyzed with RVA 4800. Carbohydr. Polym. 2022, 295, 119858 10.1016/j.carbpol.2022.119858
Feller, G.; Le Bussy, O.; Gerday, C. Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant-amylase. Appl. Environ. Microbiol. 1998, 64, 1163- 1165, 10.1128/AEM.64.3.1163-1165.1998
Clayton, J. W.; Meredith, W. O. S. The effect of thiols on the dinitrosalicylic acid test for reducing sugars. J. Inst. Brew. 1966, 72, 537- 540, 10.1002/j.2050-0416.1966.tb03001.x
Brooke, D.; Movahed, N.; Bothner, B. Universal buffers for use in biochemistry and biophysical experiments. AIMS Biophys. 2015, 2, 336, 10.3934/biophy.2015.3.336
Huggett, A. S.; Nixoh, D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet 1957, 273, 368- 370, 10.1016/s0140-6736(57)92595-3
Andersen, M.; Kari, J.; Borch, K.; Westh, P. Michaelis-Menten equation for degradation of insoluble substrate. Math. Biosci. 2018, 296, 93- 97, 10.1016/j.mbs.2017.11.011
Ernst, O.; Zor, T. Linearization of the Bradford protein assay. J. Visualized Exp. 2010, 38, 1918, 10.3791/1918
Stam, M. R.; Danchin, E. G. J.; Rancurel, C.; Coutinho, P. M.; Henrissat, B. Dividing the large glycoside hydrolase family 13 into subfamilies: Towards improved functional annotations of α-amylase-related proteins. Protein Eng., Des. Sel. 2006, 19, 555- 562, 10.1093/protein/gzl044
Janeček, Š.; Svensson, B.; MacGregor, E. A. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 2014, 71, 1149- 1170, 10.1007/s00018-013-1388-z
Ottoni, J. R.; e Silva, T. R.; de Oliveira, V. M.; Passarini, M. R. Z. Characterization of amylase produced by cold-adapted bacteria from Antarctic samples. Biocatal. Agric. Biotechnol. 2020, 23, 101452 10.1016/j.bcab.2019.101452
Aghajari, N.; Feller, G.; Gerday, C.; Haser, R. Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci. 1998, 7, 564- 572, 10.1002/pro.5560070304
Svensson, B.; Svendsen, T. G.; Svendsen, I. B.; Sakai, T.; Ottesen, M. Characterization of two forms of glucoamylase from Aspergillus niger. Carlsberg Res. Commun. 1982, 47, 55- 69, 10.1007/BF02907797
Peng, H.; Li, R.; Li, F.; Zhai, L.; Zhang, X.; Xiao, Y.; Gao, Y. Extensive hydrolysis of raw rice starch by a chimeric α-amylase engineered with α-amylase (AmyP) and a starch-binding domain from Cryptococcus sp. S-2. Appl. Microbiol. Biotechnol. 2018, 102, 743- 750, 10.1007/s00253-017-8638-1
Feller, G.; D’Amico, S.; Benotmane, A. M.; Joly, F.; Van Beeumen, J.; Gerday, C. Characterization of the C-terminal propeptide involved in bacterial wall spanning of α-amylase from the psychrophile Alteromonas haloplanctis. J. Biol. Chem. 1998, 273, 12109- 12115, 10.1074/jbc.273.20.12109
Chen, P.; Yu, L.; Chen, L.; Li, X. Morphology and microstructure of maize starches with different amylose/amylopectin content. Starch/Staerke 2006, 58, 611- 615, 10.1002/star.200500529
Altay, F.; Gunasekaran, S. Influence of drying temperature, water content, and heating rate on gelatinization of corn starches. J. Agric. Food Chem. 2006, 54, 4235- 4245, 10.1021/jf0527089
Mikkelsen, R.; Suszkiewicz, K.; Blennow, A. A novel type carbohydrate-binding module identified in α-glucan, water dikinases is specific for regulated plastidial starch metabolism. Biochemistry 2006, 45, 4674- 4682, 10.1021/bi051712a
Ooka, H.; Huang, J.; Exner, K. S. The Sabatier principle in electrocatalysis: basics, limitations, and extensions. Front. Energy Res. 2021, 9, 155, 10.3389/fenrg.2021.654460
Møller, M. S.; El Bouaballati, S.; Henrissat, B.; Svensson, B. Functional diversity of three tandem C-terminal carbohydrate-binding modules of a β-mannanase. J. Biol. Chem. 2021, 296, 100638 10.1016/j.jbc.2021.100638
Ding, N.; Zhao, B.; Ban, X.; Li, C.; Venkataram Prasad, B. V.; Gu, Z.; Li, Z. Carbohydrate-binding module and linker allow cold adaptation and salt tolerance of maltopentaose-forming amylase from marine bacterium Saccharophagus degradans 2-40T. Front. Microbiol. 2021, 12, 1948, 10.3389/fmicb.2021.708480
Guillén, D.; Santiago, M.; Linares, L.; Pérez, R.; Morlon, J.; Ruiz, B.; Sánchez, S.; Rodríguez-Sanoja, R. Alpha-amylase starch binding domains: Cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl. Environ. Microbiol. 2007, 73, 3833- 3837, 10.1128/AEM.02628-06
Kari, J.; Molina, G. A.; Schaller, K. S.; Schiano-di-Cola, C.; Christensen, S. J.; Badino, S. F.; Sørensen, T. H.; Røjel, N. S.; Keller, M. B.; Sørensen, N. R.; Kolaczkowski, B.; Olsen, J. P.; Krogh, K. B. R. M.; Jensen, K.; Cavaleiro, A. M.; Peters, G. H. J.; Spodsberg, N.; Borch, K.; Westh, P. Physical constraints and functional plasticity of cellulases. Nat. Commun. 2021, 12, 1- 10, 10.1038/s41467-021-24075-y