[en] The characterization of the distinct dynamic functional connectivity (dFC) patterns that activate in the brain during rest can help to understand the underlying time-varying network organization. The presence and behavior of these patterns (known as meta-states) have been widely studied by means of functional magnetic resonance imaging (fMRI). However, modalities with high-temporal resolution, such as electroencephalography (EEG), enable the characterization of fast temporally evolving meta-state sequences. Mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD) have been shown to disrupt spatially localized activation and dFC between different brain regions, but not much is known about how they affect meta-state network topologies and their network dynamics. The main hypothesis of the study was that MCI and dementia due to AD alter normal meta-state sequences by inducing a loss of structure in their patterns and a reduction of their dynamics. Moreover, we expected that patients with MCI would display more flexible behavior compared to patients with dementia due to AD. Thus, the aim of the current study was twofold: (i) to find repeating, distinctly organized network patterns (meta-states) in neural activity; and (ii) to extract information about meta-state fluctuations and how they are influenced by MCI and dementia due to AD. To accomplish these goals, we present a novel methodology to characterize dynamic meta-states and their temporal fluctuations by capturing aspects based on both their discrete activation and the continuous evolution of their individual strength. These properties were extracted from 60-s resting-state EEG recordings from 67 patients with MCI due to AD, 50 patients with dementia due to AD, and 43 cognitively healthy controls. First, the instantaneous amplitude correlation (IAC) was used to estimate instantaneous functional connectivity with a high temporal resolution. We then extracted meta-states by means of graph community detection based on recurrence plots (RPs), both at the individual- and group-level. Subsequently, a diverse set of properties of the continuous and discrete fluctuation patterns of the meta-states was extracted and analyzed. The main novelty of the methodology lies in the usage of Louvain GJA community detection to extract meta-states from IAC-derived RPs and the extended analysis of their discrete and continuous activation. Our findings showed that distinct dynamic functional connectivity meta-states can be found on the EEG time-scale, and that these were not affected by the oscillatory slowing induced by MCI or dementia due to AD. However, both conditions displayed a loss of meta-state modularity, coupled with shorter dwell times and higher complexity of the meta-state sequences. Furthermore, we found evidence that meta-state sequencing is not entirely random; it shows an underlying structure that is partially lost in MCI and dementia due to AD. These results show evidence that AD progression is associated with alterations in meta-state switching, and a degradation of dynamic brain flexibility.
Disciplines :
Neurology
Author, co-author :
Nunez Novo, Pablo ; University of Valladolid > Biomedical Engineering Group
Poza, Jesús ; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain, IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
Gómez, Carlos ; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
Rodríguez-González, Víctor ; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
Hillebrand, Arjan ; Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
Tewarie, Prejaas; Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
Tola-Arribas, Miguel Ángel; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
Cano, Mónica; Department of Clinical Neurophysiology, "Río Hortega" University Hospital, Valladolid, Spain
Hornero, Roberto ; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain, IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
Language :
English
Title :
Abnormal meta-state activation of dynamic brain networks across the Alzheimer spectrum.
EC - European Commission ERDF - European Regional Development Fund
Funding text :
This research was supported by ‘Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación’ and ‘European Regional Development Fund’ (FEDER) and ‘Ministerio de Ciencia, Innovación y Universidades’ under projects PGC2018-098214-A-I00, the ‘European Commission’ and FEDER under project ‘Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer’ and ‘Análisis y correlación entre la epigenética y la actividad cerebral para evaluar el riesgo de migraña crónica y episódica en mujeres’ (‘Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020’), and by CIBER-BBN (ISCIII) co-funded with FEDER funds. P. Núñez was in receipt of a predoctoral scholarship ‘Ayuda para contratos predoctorales para la Formación de Profesorado Universitario (FPU)’ grant from the ‘Ministerio de Educación, Cultura y Deporte’ (FPU17/00850). V. Rodríguez-González was in receipt of a PIF-UVa grant from the ‘University of Valladolid’.This research was supported by ?Ministerio de Ciencia e Innovaci?n - Agencia Estatal de Investigaci?n? and ?European Regional Development Fund? (FEDER) and ?Ministerio de Ciencia, Innovaci?n y Universidades? under projects PGC2018-098214-A-I00, the ?European Commission? and FEDER under project ?An?lisis y correlaci?n entre el genoma completo y la actividad cerebral para la ayuda en el diagn?stico de la enfermedad de Alzheimer? and ?An?lisis y correlaci?n entre la epigen?tica y la actividad cerebral para evaluar el riesgo de migra?a cr?nica y epis?dica en mujeres? (?Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014?2020?), and by CIBER-BBN (ISCIII) co-funded with FEDER funds. P. N??ez was in receipt of a predoctoral scholarship ?Ayuda para contratos predoctorales para la Formaci?n de Profesorado Universitario (FPU)? grant from the ?Ministerio de Educaci?n, Cultura y Deporte? (FPU17/00850). V. Rodr?guez-Gonz?lez was in receipt of a PIF-UVa grant from the ?University of Valladolid?.
Abásolo, D., Hornero, R., Gómez, C., García, M., López, M., Analysis of EEG background activity in Alzheimer's disease patients with lempel-Ziv complexity and central tendency measure. Medical Engineering and Physics 28:4 (2006), 315–322, 10.1016/j.medengphy.2005.07.004.
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., Snyder, P.J., Carrillo, M.C., Thies, B., Phelps, C.H., et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the national institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's and Dementia 7:3 (2011), 270–279, 10.1016/j.jalz.2011.03.008.
Babiloni, C., Del Percio, C., Caroli, A., Salvatore, E., Nicolai, E., Marzano, N., Lizio, R., Cavedo, E., Landau, S., Chen, K., Jagust, W., Reiman, E., Tedeschi, G., Montella, P., De Stefano, M., Gesualdo, L., Frisoni, G.B., Soricelli, A., Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer's disease: an EEG-PET study. Neurobiol. Aging 48 (2016), 122–134, 10.1016/j.neurobiolaging.2016.08.021 https://linkinghub.elsevier.com/retrieve/pii/S0197458016301993.
Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A.I., Cordone, S., Gesualdo, L., Del Percio, C., et al. Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms. International Journal of Psychophysiology 103 (2016), 88–102, 10.1016/j.ijpsycho.2015.02.008 https://linkinghub.elsevier.com/retrieve/pii/S0167876015000380.
Baker, A.P., Brookes, M.J., Rezek, I.A., Smith, S.M., Behrens, T., Probert Smith, P.J., Woolrich, M., Fast transient networks in spontaneous human brain activity. Elife 3:3 (2014), 1–18, 10.7554/eLife.01867.
Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson, J.M., Mucha, P.J., Robust detection of dynamic community structure in networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(1), 2013, 013142, 10.1063/1.4790830 http://aip.scitation.org/doi/10.1063/1.4790830.
Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57:1 (1995), 289–300, 10.2307/2346101.
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp., 2008(10), 2008, P10008, 10.1088/1742-5468/2008/10/P10008.
Bonanni, L., Moretti, D., Benussi, A., Ferri, L., Russo, M., Carrarini, C., Barbone, F., Arnaldi, D., Falasca, N.W., Koch, G., Cagnin, A., Nobili, F., Babiloni, C., Borroni, B., Padovani, A., Onofrj, M., Franciotti, R., Hyperconnectivity in dementia is early and focal and wanes with progression. Cerebral Cortex, 2020, 1–9, 10.1093/cercor/bhaa209 https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhaa209/5892783.
Briels, C.T., Schoonhoven, D.N., Stam, C.J., de Waal, H., Scheltens, P., Gouw, A.A., Reproducibility of EEG functional connectivity in Alzheimer's disease. Alzheimer's Research & Therapy, 12(1), 2020, 68, 10.1186/s13195-020-00632-3.
Brookes, M.J., Hale, J.R., Zumer, J.M., Stevenson, C.M., Francis, S.T., Barnes, G.R., Owen, J.P., Morris, P.G., Nagarajan, S.S., Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56:3 (2011), 1082–1104, 10.1016/j.neuroimage.2011.02.054 https://linkinghub.elsevier.com/retrieve/pii/S1053811911002102.
Brookes, M.J., O'Neill, G.C., Hall, E.L., Woolrich, M.W., Baker, A., Palazzo Corner, S., Robson, S.E., Morris, P.G., Barnes, G.R., et al. Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity. Neuroimage 91 (2014), 282–299, 10.1016/j.neuroimage.2013.12.066.
Cabral, J., Luckhoo, H., Woolrich, M., Joensson, M., Mohseni, H., Baker, A., Kringelbach, M.L., Deco, G., Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage 90 (2014), 423–435, 10.1016/j.neuroimage.2013.11.047 https://linkinghub.elsevier.com/retrieve/pii/S1053811913011968.
Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., Miguel Soares, J., Deco, G., Sousa, N., Kringelbach, M.L., Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep., 7(1), 2017, 5135, 10.1038/s41598-017-05425-7.
Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F., Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences 103:37 (2006), 13848–13853, 10.1073/pnas.0601417103.
Deco, G., Cabral, J., Woolrich, M.W., Stevner, A.B.A., van Hartevelt, T.J., Kringelbach, M.L., Single or multiple frequency generators in on-going brain activity: a mechanistic whole-brain model of empirical MEG data. Neuroimage 152:February (2017), 538–550, 10.1016/j.neuroimage.2017.03.023 https://linkinghub.elsevier.com/retrieve/pii/S105381191730232X.
Deco, G., Kringelbach, M.L., Jirsa, V.K., Ritter, P., et al. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Sci. Rep., 7(1), 2017, 3095, 10.1038/s41598-017-03073-5.
Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:3 (2006), 968–980, 10.1016/j.neuroimage.2006.01.021 https://linkinghub.elsevier.com/retrieve/pii/S1053811906000437.
Douw, L., Nieboer, D., Stam, C.J., Tewarie, P., Hillebrand, A., Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native MRI for co-registration. Hum. Brain Mapp. 39:1 (2018), 104–119, 10.1002/hbm.23827.
Fraschini, M., Demuru, M., Crobe, A., Marrosu, F., Stam, C.J., Hillebrand, A., et al. The effect of epoch length on estimated EEG functional connectivity and brain network organisation. J. Neural. Eng., 13(3), 2016, 036015, 10.1088/1741-2560/13/3/036015 http://www.ncbi.nlm.nih.gov/pubmed/27137952.
Fu, Z., Caprihan, A., Chen, J., Du, Y., Adair, J.C., Sui, J., Rosenberg, G.A., Calhoun, V.D., Altered static and dynamic functional network connectivity in Alzheimer's disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum. Brain Mapp. 40:11 (2019), 3203–3221, 10.1002/hbm.24591.
Gates, K.M., Henry, T., Steinley, D., Fair, D.A., A monte carlo evaluation of weighted community detection algorithms. Front. Neuroinform. 10:NOV (2016), 1–16, 10.3389/fninf.2016.00045 http://journal.frontiersin.org/article/10.3389/fninf.2016.00045/full.
Gaubert, S., Raimondo, F., Houot, M., Corsi, M.-C., Naccache, L., Diego Sitt, J., Hermann, B., Oudiette, D., Gagliardi, G., Habert, M.-O., Dubois, B., De Vico Fallani, F., Bakardjian, H., Epelbaum, S., Bakardjian, H., Benali, H., Bertin, H., Bonheur, J., Boukadida, L., Boukerrou, N., Cavedo, E., Chiesa, P., Colliot, O., Dubois, B., Dubois, M., Epelbaum, S., Gagliardi, G., Genthon, R., Habert, M.-O., Hampel, H., Houot, M., Kas, A., Lamari, F., Levy, M., Lista, S., Metzinger, C., Mochel, F., Nyasse, F., Poisson, C., Potier, M.-C., Revillon, M., Santos, A., Andrade, K.S., Sole, M., Surtee, M., de Schotten, M.T., Vergallo, A., Younsi, N., EEG Evidence of compensatory mechanisms in preclinical Alzheimer's disease. Brain 142:6 (2019), 1497–1500, 10.1093/brain/awz150 https://academic.oup.com/brain/article/142/6/1497/5498977 https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awz150/5519996.
Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M., OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online, 9(1), 2010, 45, 10.1186/1475-925X-9-45 http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-8-1.
de Haan, W., Mott, K., van Straaten, E.C.W., Scheltens, P., Stam, C.J., Activity dependent degeneration explains hub vulnerability in Alzheimer's disease. PLoS Comput. Biol., 8(8), 2012, e1002582, 10.1371/journal.pcbi.1002582.
Hansen, E.C.A., Battaglia, D., Spiegler, A., Deco, G., Jirsa, V.K., et al. Functional connectivity dynamics: modeling the switching behavior of the resting state. Neuroimage 105 (2015), 525–535, 10.1016/j.neuroimage.2014.11.001.
Hindriks, R., Adhikari, M.H., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis, N.K., Deco, G., et al. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?. Neuroimage 127 (2016), 242–256, 10.1016/j.neuroimage.2015.11.055.
Hunyadi, B., Woolrich, M.W., Quinn, A.J., Vidaurre, D., De Vos, M., A dynamic system of brain networks revealed by fast transient EEG fluctuations and their fMRI correlates. Neuroimage 185:August 2018 (2019), 72–82, 10.1016/j.neuroimage.2018.09.082.
Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., Handwerker, D.A., Keilholz, S., Kiviniemi, V., Leopold, D.A., de Pasquale, F., Sporns, O., Walter, M., Chang, C., et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80 (2013), 360–378, 10.1016/j.neuroimage.2013.05.079.
Jatoi, M.A., Kamel, N., Malik, A.S., Faye, I., Begum, T., A survey of methods used for source localization using EEG signals. Biomed. Signal Process. Control 11:1 (2014), 42–52, 10.1016/j.bspc.2014.01.009.
Khanna, A., Pascual-Leone, A., Michel, C.M., Farzan, F., Microstates in resting-state EEG: current status and future directions. Neuroscience & Biobehavioral Reviews 49 (2015), 105–113, 10.1016/j.neubiorev.2014.12.010 https://linkinghub.elsevier.com/retrieve/pii/S0149763414003492.
Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborova, L., Zhang, P., Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences 110:52 (2013), 20935–20940, 10.1073/pnas.1312486110.
Lai, M., Demuru, M., Hillebrand, A., Fraschini, M., A comparison between scalp- and source-reconstructed EEG networks. Sci. Rep. 8:1 (2018), 1–8, 10.1038/s41598-018-30869-w.
Liuzzi, L., Quinn, A.J., O'Neill, G.C., Woolrich, M.W., Brookes, M.J., Hillebrand, A., Tewarie, P., How sensitive are conventional MEG functional connectivity metrics with sliding windows to detect genuine fluctuations in dynamic functional connectivity?. Front. Neurosci. 13:JUL (2019), 1–16, 10.3389/fnins.2019.00797 https://www.frontiersin.org/article/10.3389/fnins.2019.00797/full.
Maestú, F., Yubero, R., Moratti, S., Campo, P., Gil-Gregorio, P., Paul, N., Solesio, E., del Pozo, F., Nevado, A., Brain activity patterns in stable and progressive mild cognitive impairment during working memory as evidenced by magnetoencephalography. Journal of Clinical Neurophysiology 28:2 (2011), 202–209, 10.1097/WNP.0b013e3182121743 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&AN=2011222503 https://insights.ovid.com/crossref?an=00004691-201104000-00013.
Marwan, N., Carmen Romano, M., Thiel, M., Kurths, J., Recurrence plots for the analysis of complex systems. Phys. Rep. 438:5–6 (2007), 237–329, 10.1016/j.physrep.2006.11.001.
Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Goualher, G.L., Boomsma, D., Cannon, T., Kawashima, R., Mazoyer, B., A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356:1412 (2001), 1293–1322, 10.1098/rstb.2001.0915 https://royalsocietypublishing.org/doi/10.1098/rstb.2001.0915.
McKhann, G., Knopman, D.S., Chertkow, H., Hymann, B., Jack, C.R., Kawas, C., Klunk, W., Koroshetz, W., Manly, J., Mayeux, R., Mohs, R., Morris, J., Rossor, M., Scheltens, P., Carrillo, M., Weintrub, S., Phelphs, C., et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the national institute on aging- Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dementia 7:3 (2011), 263–269, 10.1016/j.jalz.2011.03.005.The.
Núñez, P., Poza, J., Gómez, C., Barroso-García, V., Maturana-Candelas, A., Tola-Arribas, M.A., Cano, M., Hornero, R., Characterization of the dynamic behavior of neural activity in Alzheimer's disease: exploring the non-stationarity and recurrence structure of EEG resting-state activity. J. Neural Eng., 17(1), 2020, 016071, 10.1088/1741-2552/ab71e9 https://iopscience.iop.org/article/10.1088/1741-2552/ab71e9.
Núñez, P., Poza, J., Gómez, C., Rodríguez-González, V., Hillebrand, A., Tola-Arribas, M.A., Cano, M., Hornero, R., Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer's disease. J. Neural. Eng., 16(5), 2019, 056030, 10.1088/1741-2552/ab234b.
Núñez, P., Poza, J., Gómez, C., Rodríguez-González, V., Hillebrand, A., Tola-Arribas, M.A., Cano, M., Hornero, R., Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer's disease. J. Neural Eng., 16(5), 2019, 056030, 10.1088/1741-2552/ab234b.
O'Neill, G.C., Barratt, E.L., Hunt, B.a.E., Tewarie, P.K., Brookes, M.J., et al. Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods. Phys. Med. Biol., 60(21), 2015, 10.1088/0031-9155/60/21/R271 R271–R295.
O'Neill, G.C., Tewarie, P., Vidaurre, D., Liuzzi, L., Woolrich, M.W., Brookes, M.J., Dynamics of large-scale electrophysiological networks: a technical review. Neuroimage 180:May 2017 (2018), 559–576, 10.1016/j.neuroimage.2017.10.003.
Petersen, R.C., Mild cognitive impairment as a clinical entity and treatment target. Arch. Neurol. 62:7 (2004), 1160–1163;discussion 1167, 10.1001/archneur.62.7.1160.
Pievani, M., de Haan, W., Wu, T., Seeley, W.W., Frisoni, G.B., et al. Functional network disruption in the degenerative dementias. The Lancet Neurology 10:9 (2011), 829–843, 10.1016/S1474-4422(11)70158-2.
Pineda-Pardo, J.A., Bruña, R., Woolrich, M., Marcos, A., Nobre, A.C., Maestú, F., Vidaurre, D., Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. Neuroimage 101 (2014), 765–777, 10.1016/j.neuroimage.2014.08.002.
Ponce-Alvarez, A., Deco, G., Hagmann, P., Romani, G.L., Mantini, D., Corbetta, M., Resting-State temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS Comput. Biol., 11(2), 2015, e1004100, 10.1371/journal.pcbi.1004100.
Poza, J., Gómez, C., García, M., Tola-Arribas, M.A., Carreres, A., Cano, M., Hornero, R., et al. Spatio-Temporal fluctuations of neural dynamics in mild cognitive impairment and Alzheimer's disease. Curr. Alzheimer Res. 14:9 (2017), 924–936, 10.2174/1567205014666170309115656 http://www.eurekaselect.com/150776/article.
Prichard, D., Theiler, J., Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett. 73:7 (1994), 951–954.
Ramirez-Mahaluf, J.P., Medel, V., Tepper, A., Alliende, L.M., Sato, J.R., Ossandon, T., Crossley, N.A., Transitions between human functional brain networks reveal complex, cost-efficient and behaviorally-relevant temporal paths. Neuroimage, 2020, 117027, 10.1016/j.neuroimage.2020.117027 https://linkinghub.elsevier.com/retrieve/pii/S1053811920305139.
Rodríguez-González, V., Gómez, C., Shigihara, Y., Hoshi, H., Hornero, R., Revilla, M., Poza, J., Consistency of local activation parameters at sensor- and source-level in neural signals. J. Neural Eng., 2020, 10.1088/1741-2552/abb582.
Rossini, P.M., Di Iorio, R., Vecchio, F., Anfossi, M., Babiloni, C., Bozzali, M., Bruni, A.C., Cappa, S.F., Escudero, J., Fraga, F.J., Giannakopoulos, P., Guntekin, B., Logroscino, G., Marra, C., Miraglia, F., Panza, F., Tecchio, F., Pascual-Leone, A., Dubois, B., Early diagnosis of Alzheimer's disease: the role of biomarkers including advanced EEG signal analysis. report from the IFCN-sponsored panel of experts. Clinical Neurophysiology 131:6 (2020), 1287–1310, 10.1016/j.clinph.2020.03.003.
Rubinov, M., Sporns, O., Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:3 (2010), 1059–1069, 10.1016/j.neuroimage.2009.10.003.
Rubinov, M., Sporns, O., Weight-conserving characterization of complex functional brain networks. Neuroimage 56:4 (2011), 2068–2079, 10.1016/j.neuroimage.2011.03.069.
Schumacher, J., Peraza, L.R., Firbank, M., Thomas, A.J., Kaiser, M., Gallagher, P., O'Brien, J.T., Blamire, A.M., Taylor, J.-P., Dynamic functional connectivity changes in dementia with lewy bodies and Alzheimer's disease. NeuroImage: Clinical, 22(August 2018), 2019, 101812, 10.1016/j.nicl.2019.101812 https://linkinghub.elsevier.com/retrieve/pii/S2213158219301627.
Sitnikova, T.A., Hughes, J.W., Ahlfors, S.P., Woolrich, M.W., Salat, D.H., Short timescale abnormalities in the states of spontaneous synchrony in the functional neural networks in Alzheimer's disease. NeuroImage: Clinical 20:May (2018), 128–152, 10.1016/j.nicl.2018.05.028 https://linkinghub.elsevier.com/retrieve/pii/S2213158218301748.
Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., Brainstorm: A User-Friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011 (2011), 1–13, 10.1155/2011/879716.
Tewarie, P., Liuzzi, L., O'Neill, G.C., Quinn, A.J., Griffa, A., Woolrich, M.W., Stam, C.J., Hillebrand, A., Brookes, M.J., Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity. Neuroimage 200:June (2019), 38–50, 10.1016/j.neuroimage.2019.06.006 https://linkinghub.elsevier.com/retrieve/pii/S1053811919304914.
Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Doyne Farmer, J., Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:1–4 (1992), 77–94, 10.1016/0167-2789(92)90102-S.
Tognoli, E., Kelso, J.A.S., The metastable brain. Neuron 81:1 (2014), 35–48, 10.1016/j.neuron.2013.12.022 https://linkinghub.elsevier.com/retrieve/pii/S0896627313011835.
Vidaurre, D., Hunt, L.T., Quinn, A.J., Hunt, B.A.E., Brookes, M.J., Nobre, A.C., Woolrich, M.W., Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat. Commun., 9(1), 2018, 2987, 10.1038/s41467-018-05316-z.
Vidaurre, D., Llera, A., Smith, S.M., Woolrich, M.W., Behavioural relevance of spontaneous, transient brain network interactions in fMRI. bioRxiv, 2019, 10.1101/779736.
Vidaurre, D., Quinn, A.J., Baker, A.P., Dupret, D., Tejero-Cantero, A., Woolrich, M.W., Spectrally resolved fast transient brain states in electrophysiological data. Neuroimage 126 (2016), 81–95, 10.1016/j.neuroimage.2015.11.047.
Vidaurre, D., Smith, S.M., Woolrich, M.W., Brain network dynamics are hierarchically organized in time. Proceedings of the National Academy of Sciences 114:48 (2017), 12827–12832, 10.1073/pnas.1705120114.
Webber, C.L., Zbilut, J.P., Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in contemporary nonlinear methods for the Behavioral Sciences Web Book, 2005, 26–94 https://www.nsf.gov/sbe/bcs/pac/nmbs/chap2.pdf.
Xia, M., Wang, J., He, Y., Brainnet viewer: A Network visualization tool for human brain connectomics. PLoS ONE, 8(7), 2013, 10.1371/journal.pone.0068910.
Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., Breakspear, M., Time-resolved resting-state brain networks. Proceedings of the National Academy of Sciences 111:28 (2014), 10341–10346, 10.1073/pnas.1400181111.
Zhou, Q., Zhang, L., Feng, J., Lo, C.-Y.Z., Tracking the main states of dynamic functional connectivity in resting state. Front. Neurosci. 13:JUL (2019), 1–12, 10.3389/fnins.2019.00685 https://www.frontiersin.org/article/10.3389/fnins.2019.00685/full.
Zhuang, X., Yang, Z., Mishra, V., Sreenivasan, K., Bernick, C., Cordes, D., Single-scale time-dependent window-sizes in sliding-window dynamic functional connectivity analysis: a validation study. Neuroimage, 220(April), 2020, 117111, 10.1016/j.neuroimage.2020.117111.