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a b s t r a c t 

The characterization of the distinct dynamic functional connectivity (dFC) patterns that activate in the brain dur- 
ing rest can help to understand the underlying time-varying network organization. The presence and behavior 
of these patterns (known as meta-states) have been widely studied by means of functional magnetic resonance 
imaging (fMRI). However, modalities with high-temporal resolution, such as electroencephalography (EEG), en- 
able the characterization of fast temporally evolving meta-state sequences. Mild cognitive impairment (MCI) and 
dementia due to Alzheimer’s disease (AD) have been shown to disrupt spatially localized activation and dFC 
between different brain regions, but not much is known about how they affect meta-state network topologies 
and their network dynamics. The main hypothesis of the study was that MCI and dementia due to AD alter nor- 
mal meta-state sequences by inducing a loss of structure in their patterns and a reduction of their dynamics. 
Moreover, we expected that patients with MCI would display more flexible behavior compared to patients with 
dementia due to AD. Thus, the aim of the current study was twofold: (i) to find repeating, distinctly organized 
network patterns (meta-states) in neural activity; and (ii) to extract information about meta-state fluctuations 
and how they are influenced by MCI and dementia due to AD. To accomplish these goals, we present a novel 
methodology to characterize dynamic meta-states and their temporal fluctuations by capturing aspects based on 
both their discrete activation and the continuous evolution of their individual strength. These properties were 
extracted from 60-s resting-state EEG recordings from 67 patients with MCI due to AD, 50 patients with dementia 
due to AD, and 43 cognitively healthy controls. First, the instantaneous amplitude correlation (IAC) was used to 
estimate instantaneous functional connectivity with a high temporal resolution. We then extracted meta-states 
by means of graph community detection based on recurrence plots (RPs), both at the individual- and group-level. 
Subsequently, a diverse set of properties of the continuous and discrete fluctuation patterns of the meta-states 
was extracted and analyzed. The main novelty of the methodology lies in the usage of Louvain GJA community 
detection to extract meta-states from IAC-derived RPs and the extended analysis of their discrete and continuous 
activation. Our findings showed that distinct dynamic functional connectivity meta-states can be found on the 
EEG time-scale, and that these were not affected by the oscillatory slowing induced by MCI or dementia due 
to AD. However, both conditions displayed a loss of meta-state modularity, coupled with shorter dwell times 
and higher complexity of the meta-state sequences. Furthermore, we found evidence that meta-state sequencing 
is not entirely random; it shows an underlying structure that is partially lost in MCI and dementia due to AD. 
These results show evidence that AD progression is associated with alterations in meta-state switching, and a 
degradation of dynamic brain flexibility. 
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. Introduction 

The human brain is a complex system comprised of a vast network
f neurons connected by synapses that engage in continuous ongoing
lectrical and chemical processes that appear and dissolve across mul-
iple spatial and temporal scales ( Babiloni et al., 2016b; Tognoli and
elso, 2014 ). A large body of work has studied the functional interac-
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ions (functional connectivity, FC) between these neuronal ensembles in
 strictly static sense, overlooking the possible temporal dimensions at
lay in these interactions ( O’Neill et al., 2018 ). This field, known as static

unctional connectivity (sFC), assumes that the statistical interdependence
etween brain regions remains temporally stationary during the resting-
tate ( Hindriks et al., 2016 ). While studies on sFC have offered signif-
cant insights into the properties of neural activity ( Hutchison et al.,
013 ), it has been shown that the brain does not remain in a state of
tatic equilibrium. Instead, it undergoes complex dynamic behavior with
atterns of FC that fluctuate in time and space ( Hansen et al., 2015;
’Neill et al., 2018 ). Hence, it has been proposed that resting-state net-
orks display meaningful dynamic behavior that is also distinct from the
ne found in task-driven brain activity ( Deco et al., 2013 ). This novel
eld, known as dynamic functional connectivity (dFC), has opened the
ates to a large array of studies that aim to look past previous assump-
ions of stationarity during rest (for reviews, see Deco et al. (2013) ;
’Neill et al. (2018) ). 

Neuronal activity can be measured with different techniques, such as
unctional magnetic resonance imaging (fMRI), electroencephalography
EEG) and magnetoencephalography (MEG). Each of these techniques is
seful to estimate neuronal interactions at different temporal and spatial
cales, such as on the order of seconds to minutes (fMRI) and millisec-
nds (MEG and EEG) ( Núñez et al., 2019a; Tewarie et al., 2019 ). While
ost dFC research has been conducted using fMRI, its time-varying be-
avior evolves at a very slow rate and is not able to characterize the
otentially fast neuronal dynamics ( O’Neill et al., 2018 ). In contrast,
he high temporal resolution of both MEG and EEG allows for a pre-
ise measurement of the (dynamically changing) oscillations that lie at
he core of brain function ( Babiloni et al., 2016b; O’Neill et al., 2018 ).

hile MEG provides a higher spatial resolution, EEG is a cost-effective
echnique, widely used in clinical settings, that directly measures the
lectrical activity generated by postsynaptic potentials ( Núñez et al.,
019a; Poza et al., 2017 ). 

Even though neurophysiological techniques enable the detection of
ery fast dynamics of functional interaction, most traditional EEG/MEG
FC studies suffer from the limitation of being based on sliding win-
ows (segments of a relatively large number of temporal samples) from
hich the FC is estimated ( Fraschini et al., 2016; O’Neill et al., 2018;
ewarie et al., 2019 ). The sliding window approach suffers from a se-
ies of limitations, such as the necessity of choosing a non-trivial window
ize ( Fraschini et al., 2016; Liuzzi et al., 2019; Núñez et al., 2019a ). In
his study we used a recently proposed measure of very high resolution
C: the instantaneous amplitude correlation (IAC) ( Tewarie et al., 2019 ).
n order to account for the high susceptibility to noise of this metric, a
ompromise between traditional sliding windows and instantaneous FC
an be reached by means of data-driven windows based on recurrence
lots (RPs), ( Tewarie et al., 2019 ), which are two-dimensional symmet-
ic matrices that represent visits to the same area in the phase space of
 dynamical system ( Deco et al., 2017b; Marwan et al., 2007; Webber
nd Zbilut, 2005 ). 

Here, we advance the methodology presented by
ewarie et al. (2019) by using these RPs to estimate the time windows

n which the system can be considered to be in the same state, and
xtracting temporally repeating FC patterns by means of community de-
ection methods ( Bassett et al., 2013; O’Neill et al., 2018 ). In this study,
e propose to extract these patterns by means of a community detection
lgorithm (Louvain GJA) that does not require a priori definition of the
umber of meta-states ( Zhou et al., 2019 ). This is a known limitation of
ost methods for the identification of repeating connectivity patterns,

uch as k -means clustering ( O’Neill et al., 2018 ). These communities can
e interpreted as temporally repeating brain network configurations
meta-states). After extracting temporally repeating meta-states, we
onstruct a summary of the temporal activation of these states, and
2 
xtract relevant information about the underlying temporal structure of
he functional brain networks. In order to achieve a comprehensive and
ovel characterization of brain dynamics, we computed two types of
etrics: (i) based on the discrete temporal activation of the meta-states,

nd (ii) based on the continuous correlation of each meta-state with the
nstantaneous FC. This new methodology provides new information on
rain meta-state switching that can be used to investigate the possible
lterations to normal brain behavior during rest that may be induced
y neurological disorders. 

To assess the ability of this new methodology to detect meaningful
nformation, we apply it to two closely related conditions that affect
rain activity: mild cognitive impairment (MCI) and dementia due to
lzheimer’s disease (AD). Dementia due to AD is a neurodegenerative
isorder that has been shown to perturb EEG brain activity. AD is charac-
erized by the progressive disruption of different brain areas ( Palop and
ucke, 2010; Pievani et al., 2011 ). Some observed disruptions include

ower shifts of neural activity to lower frequencies, aberrant connectiv-
ty patterns, and alterations of network properties ( Rossini et al., 2020 ).
CI is sometimes considered a prodromal stage of AD, with both dis-

rders being seen as part of the same continuum ( Petersen, 2004 ). We
ound that patients with MCI often show subtle neural abnormalities
ompared to normal aging than can be seen as an early indicator of
D ( Poza et al., 2017 ). In our previous studies we observed these ef-

ects that pointed to frequency-dependent aberrant dynamic behavior
n MCI and dementia due to AD ( Núñez et al., 2020; 2019b ). Patients
ith MCI and dementia due to AD displayed abnormal electrode-level
EG activity recurrence and non-stationarity patterns. Specifically, con-
rols showed higher levels of non-stationarity compared to MCI and AD
n the theta and alpha bands; the opposite behavior occurred in the beta
and, pointing to aberrant state switching in MCI and AD ( Núñez et al.,
020 ). We also found a significant reduction in alpha and beta ampli-
ude envelope correlation dFC (using sliding windows) in AD compared
o controls, indicating a loss of neural dynamics in patients with this
ondition ( Núñez et al., 2019b ). 

Based on these premises, in the present study, we hypothesized that
CI and dementia due to AD might alter normal meta-state sequenc-

ng, inducing a loss of underlying structure of repeating patterns in
aid sequences, as well as a loss in dynamics of general state fluctua-
ions. Consequently, the purpose of the present study is twofold: (i) in
 first step, we focused on finding stable, distinctly organized repeating
etwork patterns (meta-states); and (ii) secondly, we aimed at extract-
ng relevant information about the fluctuations of these meta-states to
tudy how they are influenced by MCI and dementia due to AD. The
anuscript is structured in two parts: first, a novel methodology for
eta-state extraction by means of a RP and community detection is pre-

ented; then, the extracted meta-states, their temporal sequencing, and
ynamical properties are compared between healthy controls, patients
ith MCI and patients with dementia due to AD. 

. Materials 

.1. Subjects 

The study sample was formed by 160 subjects: 43 cognitively healthy
ontrols, 67 patients with MCI due to AD, and 50 patients with de-
entia due to AD. The criteria of the National Institute on Aging and
lzheimer’s Association (NIA-AA) were used to diagnose the patients
ith MCI or dementia due to AD ( Albert et al., 2011; McKhann et al.,
011 ). The control group was composed of elderly subjects with no his-
ory of neurological or psychiatric disorders. Potential participants were
xcluded according to the following exclusion criteria: (1) presence or
istory of other neurological or psychiatric diseases; (2) atypical course
r uncommon clinical presentations according to the NIA-AA criteria;
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Table 1 
Socio-demographic and clinical data. AD: Alzheimer’s disease; MCI: mild cog- 
nitive impairment; m: median; IQR: interquartile range ; M: male; F: female; 
A: primary education or below; B: secondary education or above; MMSE: Mini- 
Mental State Examination. 

Data 
Group 

Patients with AD Patients with MCI Controls 

Number of subjects 50 67 43 

Age (years) (m[IQR]) 78 . 5[75 . 7 , 82 . 4] 77 . 2[72 . 2 , 80 . 6] 75 . 8[74 . 0 , 78 . 7] 
Sex (M:F) 23 ∶ 27 29 ∶ 38 13 ∶ 30 
Education level (A:B) 35 ∶ 15 41 ∶ 26 16 ∶ 27 
MMSE (m[IQR]) 22[20 , 24] 27[26 , 28] 29[28 , 30] 
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b  
3) advanced dementia (Clinical Dementia Rating = 3); (4) institution-
lized patients; or (5) medication that could have an influence on EEG
ctivity. The socio-demographic characteristics of each group are spec-
fied in Table 1 . The database used in this study is an updated version
f the one used in Núñez et al. (2019b) and Núñez et al. (2020) . 

Statistical analyses were conducted over all clinical and socio-
emographic data in order to assess possible differences between groups
hat may act as confounding factors. The groups did not differ in age
 𝜒2 (2) = 4 . 62 , 𝑝 = . 091 , Kruskal-Wallis test) or sex ( 𝜒2 (2) = 2 . 72 , 𝑝 = . 256 ,
hi-squared test). The groups did show statistically significant differ-
nces in education level ( 𝜒2 (2) = 10 . 81 , 𝑝 < . 001 , Chi-squared test). Thus,
tatistical differences between both education levels were assessed for
ll the extracted measures (see Section 4.2 ). 

As expected, MMSE scores were lower in patients with AD compared
o controls ( 𝑈 = 8 . 184 , 𝑝 < . 001 , Mann-Whitney U -test) and patients with
CI ( 𝑈 = 8 . 074 , 𝑝 < . 001 , Mann-Whitney U -test). MMSE scores were also

ower in patients with MCI compared to controls ( 𝑈 = 5 . 463 , 𝑝 < . 001 ,
ann-Whitney U -test). 

All participants and caregivers were informed about the research and
tudy protocol and gave their written informed consent. The Ethics Com-
ittee of the “Río Hortega ” University Hospital (Valladolid, Spain) ap-
roved the study (36/2014/02) according to the Code of Ethics of the
orld Medical Association (Declaration of Helsinki). 

.2. Electroencephalographic recordings 

EEG signals were recorded by means of a 19-channel EEG system
XLTEK 

R ○, Natus Medical) at the Department of Clinical Neurophysiol-
gy of the “Río Hortega ” University Hospital, Valladolid, Spain. EEG
ctivity was recorded from electrodes Fp1, Fp2, Fz, F3, F4, F7, F8, Cz,
3, C4, T3, T4, T5, T6, Pz, P3, P4, O1, and O2, according to the specifi-
ations of the international 10–20 system and at a sampling frequency of
00 Hz. The recorded signals were bipolar and re-referenced by means
f common average referencing (CAR) ( Núñez et al., 2019a ). Subjects
ere asked to remain awake, still, and with eyes closed during the ac-
uisition of the EEG. In order to prevent sleepiness, EEG traces were
isually monitored in real time. Drowsiness episodes, subtle muscle ac-
ivity, and eye-movement related artifacts were identified and marked
uring the course of the EEG acquisition. 

Five minutes of EEG activity were recorded for each subject. The
EG signals were then preprocessed in three steps ( Núñez et al., 2020;
019b ): (i) independent component analysis to remove components
ith artifacts, such as the heartbeat, eye blinks and electromyographic
rtifacts; (ii) finite impulse response (FIR) filtering (Hamming window,
lter order 2000, forward and backward filtering) to remove 50 Hz noise
nd to limit spectral content to the wide frequency band of [1 70] Hz;
nd (iii) visual rejection of any remaining artifacts, selecting the first 60
onsecutive seconds of artifact-free activity for each subject. 
3 
. Methods 

.1. Source localization: Sloreta 

The EEG time series were reconstructed at the source level by means
f standardized low resolution brain electromagnetic tomography
sLORETA), which estimates a specific solution to the EEG inverse prob-
em with zero localization errors ( Pascual-Marqui, 2002 ). Localization
nference in sLORETA is based on the standardization of the current den-
ity estimates ( Pascual-Marqui, 2002 ). A sLORETA implementation is
reely available in Brainstorm ( http://neuroimage.usc.edu/brainstorm)
 Tadel et al., 2011 ) and is described in detail in ( Pascual-Marqui, 2002 ).
his method has been widely used to analyze EEG activity ( Babiloni
t al., 2016a; Jatoi et al., 2014; Rodríguez-González et al., 2020 ). 

A forward model was created using the anatomical information
f the ICBM152 template from the Montreal Neurological Institute
 Douw et al., 2018; Mazziotta et al., 2001 ). A three-layer head model
brain, skull, and scalp) was built using a Boundary Element method
ased on the aforementioned template using OpenMEEG software
 Gramfort et al., 2010 ). This head model was used as source space, with
 total number of 15,000 sources, which were restricted to be normal
o cortex. The 15,000 source-reconstructed EEG time series were par-
ellated into the 68 cortical regions of interest (ROIs) of the Desikan-
illiany atlas by averaging the sources after flipping the sign of sources
ith opposite directions ( Desikan et al., 2006 ). 

Sign-flipping of sources over a ROI is performed due to an impor-
ant limitation of sLORETA and other source reconstruction techniques,
hich is the fact that sources have arbitrary orientations (i.e., a source
ith a particular orientation will generate the same activation pattern
t the electrode as one with the same orientation but opposite polar-
ty) Vidaurre et al. (2016) . This makes it impossible to distinguish be-
ween the two scenarios, as both would lead to the same EEG signal
t the sensor level. For this reason, sign-flipping is necessary to avoid
elf-cancellation of neighboring sources when averaging over a region
f interest (ROI), which would lead to distorted and incorrect recon-
truction of averaged ROI activity. 

.2. Meta-state detection by means of community detection: Analysis steps 

The analysis-steps of the study are visualized in Fig. 1 . The workflow
f the study was divided into four steps which are described in detail in
he following sections. First (1) , an instantaneous FC tensor was com-
uted by means of the IAC for all samples in the 60-s EEG recordings
68 ROIs × 68 ROIs × 12,000 samples). The IAC was computed in the
onventional frequency bands: delta ( 𝛿, 1–4 Hz), theta ( 𝜃, 4–8 Hz), alpha
 𝛼, 8–13 Hz), beta-1 ( 𝛽1 , 13–19 Hz), and beta-2 ( 𝛽2 , 19–30 Hz). Then
2) , whole-recording RPs were computed from the IAC matrices of each
emporal sample; and data-driven windows were obtained to mitigate
he effect of noise and aggregate the data, as well as to reduce the size
f the RPs for computational purposes. In the next step (3a) , in order to
ggregate subject meta-states into generalized networks, per-group com-
unity detection was performed based on the RPs constructed from the
ata-driven windows of all subjects in a group. Afterwards (3b) , per-
ubject community detection was performed on the RPs of each sub-
ect. Finally (4) , two representations of the temporal evolution of the
ominant subject-level meta-states were obtained. The first, called the
emporal activation sequence (TAS), represents the discrete activation of
he dominant meta-states. This was achieved by assigning each tempo-
al sample in the time evolving FC tensor to the closest meta-state, in
erms of the Spearman correlation. The second, the instantaneous cor-

elation tensor (ICT) is a representation of the Spearman correlation of
ach meta-state with the IAC for each temporal sample. Then, a series
f metrics, such as dwell time and complexity, were extracted from the
AS and the ICT. 

The code for the computation of the IAC can
e found on Github ( https://github.com/Prejaas/

http://neuroimage.usc.edu/brainstorm\051
https://github.com/Prejaas/High-temporal-resolution-MEG-measures-of-functional-connectivity
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Fig. 1. Analysis-steps of the study. (1) Computa- 
tion of instantaneous FC tensor by means of the IAC 
in the conventional frequency bands: delta ( 𝛿, 1–
4 Hz), theta ( 𝜃, 4–8 Hz), alpha ( 𝛼, 8–13 Hz), beta-1 
( 𝛽1 , 13–19 Hz) and beta-2 ( 𝛽2 , 19–30 Hz). (2) Com- 
putation of sample-by-sample whole-recording RPs 
from the IAC matrices, followed by identification of 
data-driven windows to mitigate the effect of noise 
and aggregate the data. Each sample corresponds to 
a sampling period of 5 ms. Each data-driven win- 
dow has a duration of 5 ms × the specific num- 
ber of samples in the window. (3a) Per-group com- 
munity detection to aggregate subject meta-states 
into generalized networks. (3b) Per-subject com- 
munity detection to extract distinct communities, 
identified as meta-states. (4) Computation of the 
temporal activation sequence (TAS) and the instan- 
taneous correlation tensor (ICT), representing the 
discrete and continuous temporal evolution of the 
meta-states by means of their Spearman correlation 
with the instantaneous FC matrices. Computation of 
the modularity, as well as measures derived from 

the TAS (dwell time, TAS complexity), the ICS (in- 
stantaneous correlation speed), and from both (leap 
size). 
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igh- temporal- resolution- MEG- measures- of- functional- connectivity ). 
he code for the computation of data-driven windows, meta-state
xtraction, the TAS and ICT, and the metrics of meta-state activation
an be found on Github as well ( https://github.com/pablonuneznovo/
eta- state- extraction- from- high- temporal- resolution- connectivity ). 

.2.1. Instantaneous amplitude correlation (IAC) 

The instantaneous amplitude correlation (IAC) is a high temporal
esolution measure of FC based on a widely used metric of static
C, the amplitude envelope correlation Brookes et al. (2011, 2014) ;
’Neill et al. (2015) ; it can be seen as its instantaneous counterpart
 Tewarie et al., 2019 ). The IAC is based on the notion that if two regions
isplay high amplitudes at the same time, their correlation will increase
 Tewarie et al., 2019 ). Thus, the IAC is computed as the Hadamard prod-
ct between the amplitude envelopes of two ROIs ( Tewarie et al., 2019 ):

𝐴𝐶 𝑖𝑗 ( 𝑡 ) = �̂� 𝑖 ( 𝑡 ) ◦�̂� 𝑗 ( 𝑡 ) , (1)

here ◦ represents the Hadamard product and �̂� ( 𝑡 ) is the amplitude en-
elope of a normalized (z-score) time-series. Due to its nature, the IAC
4 
s not sensitive to interactions due to negative correlations between the
nvelopes ( Tewarie et al., 2019 ). In order to minimize spurious corre-
ations due to the effects of spatial leakage, before the computation of
he IAC, the time-series were pairwise orthogonalized after band-pass
ltering ( O’Neill et al., 2018 ). 

.2.2. Recurrence plots (RPs) and data-driven windows 

The property of returning to previous states (recurrence) is a fun-
amental characteristic of many dynamical systems ( Marwan et al.,
007 ). RPs are two-dimensional plots that can characterize the emer-
ence and dissolution of states in dynamical systems and help to vi-
ualize periodicity patterns ( Marwan et al., 2007; Webber and Zbilut,
005 ). In their original definition, RPs are symmetric 𝑁 ×𝑁 binary ar-
ays ( Marwan et al., 2007 ): 

 𝑛,𝑚 ( 𝜀 ) = Θ( 𝜀 − ‖X 𝑛 − X 𝑚 ‖) , (2)

here X 𝑛 is the trajectory at time 𝑛, 𝜀 is a threshold (which has to be cho-
en carefully ( Marwan et al., 2007 )), Θ( ⋅) is the Heavyside function, and
⋅ ‖ is a norm. In case of a time-series with 𝑀 regions, X 𝑛 would have
imensions 𝑀𝑥 1 . Usually, the trajectory is reconstructed from a time-

https://github.com/Prejaas/High-temporal-resolution-MEG-measures-of-functional-connectivity
https://github.com/pablonuneznovo/Meta-state-extraction-from-high-temporal-resolution-connectivity
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eries x by means of time delayed embedding ( Marwan et al., 2007 ).
owever, here we use the Spearman correlation between the IAC FC

ime-series instead of the norm in Eq. 2 , in order to avoid choosing an
rbitrary threshold, so that the RP becomes ( Tewarie et al., 2019 ): 

 𝑛,𝑚 = corr [ 𝐼 𝐴𝐶( 𝑛 ) , 𝐼 𝐴𝐶( 𝑚 )] . (3)

y doing this, we get an RP that displays how the functional network
eturns to similar configurations. 

The IAC FC-based RPs can be used to show the points in time where
he system transitions to other states by computing the gradients along
he diagonal and setting the local maxima in the gradient matrix; this
nformation reveals transitions to other states, as boundary points for
ata-driven windows ( Tewarie et al., 2019 ). These data-driven windows
dentify periods in which the FC is similar across the brain, and have
he added advantage of mitigating the effects of noisy estimates of in-
tantaneous FC. The only constraint set was that the minimum distance
etween local maxima was of at least one oscillation of the frequency
and of interest ( Tewarie et al., 2019 ). Supplementary figure S1 shows a
chematic overview of the approach. After setting the data-driven win-
ows, the IAC was temporally averaged over these windows; thus, a
emporally aggregated RP was computed with the windowed IAC in or-
er to reduce noise and make the next analysis step computationally
easible. 

.2.3. Meta-state extraction by means of community detection 

Community detection has been used in FC matrices themselves to
ncover brain regions that are highly clustered and weakly connected
o other regions ( Bassett and Bullmore, 2006; Gates et al., 2016 ). How-
ver, in the present study we use a community detection algorithm to
nd which of the windowed FC matrices are highly correlated to oth-
rs, similarly to Zhou et al. (2019) . That is, we aim to find clusters of
hole brain activity that repeat over time, identified as meta-states, in
n unsupervised fashion. This eliminates one of the main disadvantages
f most clustering methods, as well as other techniques for functional
etwork detection such as hidden Markov models and non-negative ten-
or factorization, which is the fact that one has to a priori determine the
umber of communities to extract ( Cabral et al., 2017; O’Neill et al.,
018; Ponce-Alvarez et al., 2015; Tewarie et al., 2019 ). 

When viewing the RP as a graph, each data-driven window is a node,
nd the Spearman correlation between windows are the edges between
he nodes. Thus, the RP can be seen as a weighted graph (since edges
an be any value from -1 to 1) differentiating stronger and weaker cor-
elations ( Zhou et al., 2019 ). In order to detect repeating communities
meta-states) in the RP, we used the Louvain GJA method, a hierarchical
lustering approach that maximizes the modularity score ( Gates et al.,
016 ). The modularity measures the strength of links within a commu-
ity compared to links outside the said community ( Gates et al., 2016 ).
he Louvain GJA method ( Rubinov and Sporns, 2011 ) is an improved
ersion of the algorithm originally described by ( Blondel et al. (2008) ).
t initializes each node in its own community and then identifies the lo-
al maxima of the modularity score by looking at its changes iteratively
hen moving nodes to other communities ( Gates et al., 2016 ). It has
een proven to be robust in the presence of poorly defined communities
i.e., communities with medium to high correlations between them and
nequally sized communities ( Gates et al., 2016 )). Since the algorithm
s non-deterministic, we ran it 100 times and kept the solution with
he highest modularity ( Gates et al., 2016 ). We used the implementa-
ion of the Louvain GJA algorithm from the brain connectivity toolbox
ubinov and Sporns (2010) . 

As indicated in Fig. 1 , two types of community analyses were per-
ormed: 

• Per-subject community detection: a RP based on the windowed
IAC was computed for each subject and community detection was
performed on each individually. Then, the spatial patterns of each
community (meta-state) for each individual subject were obtained
5 
by averaging the windowed IAC FC matrices that belonged to the
same meta-state. 

• Per-group community detection: the same procedure as in per-
subject community detection, except that the RPs were constructed
from the concatenated windowed IAC of all subjects in each group. 

.2.4. Meta-state temporal activation sequence (TAS) and instantaneous 

orrelation tensor (ICT) 

Once the meta-states were obtained from the windowed IAC FC ma-
rices, to further dive into the temporal fluctuations, each of the tempo-
al samples in the original, non-windowed FC time series was assigned
o the closest meta-state by means of the Spearman correlation distance.
he resulting symbolic time series, which we named temporal activation

equence (TAS), shows the temporal evolution of the dominant meta-
tates during the 60-s EEG recording. The concept of the TAS as discrete
tate time courses has been previously applied to characterize transi-
ions between brain states (e.g., in the context of hidden Markov mod-
ls applied to MEG ( Baker et al., 2014 ) and fMRI leading eigenvector
ecomposition ( Cabral et al., 2017 )). Moreover, the characterization of
iscrete dynamic network switching by means of Leading Eigenvector Dy-

amic Analysis has recently been mathematically formalized and vali-
ated with a large dataset ( Vohryzek et al., 2020 ). The instantaneous
orrelation tensors (ICT) can also be used to compute parameters of
rain activation and serve as a representation of continuous activation
f brain states, complementing the discrete representation of the TAS.
ig. 2 displays a sample TAS, as well as the associated ICT. Two types
f metrics were computed in the next step: measures derived in terms of
he discrete states (TAS) ( Fig. 2 , upper panel), and measures based on
he continuous correlation (ICT) ( Fig. 2 , lower panel). Supplementary
aterial video SV1 shows a visual representation of the TAS and ICT in

eal time for a cognitively healthy subject and an AD patient. 

.2.5. Metrics of meta-state activation 

Along with the modularity, two parameters were extracted from the
AS (average dwell time and TAS complexity), one from the continuous
orrelations (instantaneous correlation speed) and one from information
rom both the TAS and the continuous correlation (leap size). These pa-
ameters provide information about the underlying temporal structure
f the brain networks, the flexibility and variability of brain activation
uring rest, and the biological cost of meta-state switching: 

Average dwell time . This parameter (also referred to in the litera-
ure as “life time ” ( Baker et al., 2014 ) measures the time the brain spends
n the same dominant meta-state on average, and has been widely used
n studies of dynamic brain state switching ( Baker et al., 2014; Cabral
t al., 2017; Schumacher et al., 2019; Vohryzek et al., 2020 ). 

TAS complexity . In order to efficiently capture the underlying struc-
ural richness of temporal meta-state sequencing, we used the Lempel-
iv complexity (LZC). The LZC is a non-parametric measure of complex-
ty for one-dimensional signals that relates to the amount of distinct sub-
trings and their rate of occurrence ( Abásolo et al., 2006 ). A higher LZC
ndicates that the data is more complex ( Abásolo et al., 2006 ). The LZC
lgorithm is described in ( Abásolo et al., 2006 ), with the only differ-
nce here being that the TAS is already a finite symbol sequence, thus
o conversion is needed. 

Instantaneous correlation speed (ICS) . The ICT is a measure of the
pearman correlation of each meta-state at each time point (dimensions
 × 𝑇 , where 𝐾 is the number of meta-states and 𝑇 is the number of

emporal samples in the 60-s EEG segment), and can thus be seen as
 temporally changing position vector, where each spatial coordinate
orresponds to a meta-state. The ICT can therefore be seen as a repre-
entation of how the meta-states dynamically attract the resting brain
owards a specific network configuration. 

Considering the difference in meta-state correlation position be-
ween consecutive time points as a displacement vector ⃗𝒓 , the instanta-
eous correlation velocity can be easily calculated as its derivative with
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Fig. 2. Temporal activation sequence (upper diagram) and instantaneous correlation tensor (lower diagram) for a sample patient with AD for the first 10 seconds 
of the recording in the alpha band. The temporal activation sequence is a symbolic representation that shows the dominant meta-states at each time point. The 
highest correlation at each time point is marked with a bold line. Brain plots for each meta-state are also represented. As can be observed, more than one state can 
be correlated with the instantaneous FC at one time point. 
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espect to time ⃗𝒗 = 𝒓 ′. The ICS is the magnitude of the instantaneous cor-
elation velocity 𝒔 = |𝒗 |. Fig. 2 and supplementary material video SV1
how a visual representation of the temporal evolution of meta-state cor-
elations (SV1 shows a real-time representation in polar coordinates). In
rder to characterize the dynamic flexibility of the brain during meta-
tate switching, we computed both the mean and the standard deviation
f the ICS. 

Leap size . The leap size is a measure that characterizes the
etabolic cost of transitioning from one meta-state to another; it is com-
uted as the distance between one meta-state and the next ( Ramirez-
ahaluf et al., 2020 ). We calculated the leap size as 1 - the Spearman

orrelation coefficient of the consecutive IAC FC matrices when a meta-
tate transition occurred ( Ramirez-Mahaluf et al., 2020 ). Thus, this mea-
ure is derived from both the ICT and the TAS. 

Modularity . The modularity is a measure of the strength of
inks within a community compared to links outside the community
 Gates et al., 2016 ). In other words, it can be seen as an indicator of
ow well the communities within the graph are partitioned, with higher
alues meaning more clustered communities ( Gates et al., 2016 ). In this
ase, we interpreted this measure as indicating how well defined and
eparated the meta-states for each subject were. The modulation values
sed here were those obtained from the Louvain GJA algorithm during
he per-subject community detection step. 

.2.6. Surrogate data for measure normalization 

In order to evaluate whether the extracted measures of dynamic
tate behavior reflected real dFC and were not due to random fluc-
uations, we performed surrogate data testing ( Hindriks et al., 2016 ).

e constructed surrogate versions of each EEG recording by means
f the amplitude adjusted Fourier transform (AAFT). It is an improve-
ent of the phase randomization method of surrogate data construction

 Prichard and Theiler, 1994 ) that retains the amplitude distribution of
he original time series ( Khambhati et al., 2018; Theiler et al., 1992 ).
rucially, we used the same sequence of random numbers for every ROI
uniform phase randomization) to ensure that the linear correlations
ere kept intact (in other words, to preserve static FC) ( Hindriks et al.,
016; Khambhati et al., 2018 ). 

As in Núñez et al. (2019b) , all the measures were normalized by di-
iding them by the average values computed from 100 surrogate time
eries. Thus, values that cannot be explained by genuine fluctuations are
loser to 1, while values that are far from 1 (higher or lower) reflect be-
avior that is intrinsically due to dFC. Moreover, this correction ensures
6 
hat all the measures can be compared between groups ( Núñez et al.,
019b ). 

.3. Statistical analyses 

An exploratory analysis was initially performed to assess the distribu-
ion of the average dwell time, TAS complexity, ICS, leap size and modu-
arity. Normality was assessed with the Lilliefors test, while homoscedas-
icity was assessed with the Levene test. The results showed that the val-
es did not meet parametric test conditions for all measures. Therefore,
etween-group differences were assessed with non-parametric tests. 

We conducted exploratory Kruskal-Wallis tests on the dwell time,
AS complexity, ICS, leap size, and modularity values in all frequency
ands under study to detect global interactions between the three
roups. Afterwards, post-hoc Mann-Whitney U -tests were performed to
ssess pairwise between-group differences in the frequency bands that
isplayed global interactions. A false discovery rate (FDR) correction
as used to control for type I error ( Benjamini and Hochberg, 1995 ).
DR correction was applied to control for the number of bands
global interactions) and groups (pairwise comparisons), with a sig-
ificance level of 𝛼 = 0 . 05 . Signal processing and statistical analyses
ere performed using MATLAB 

R ○ (version R2018a Mathworks, Natick,
A). The brain networks were visualized with the BrainNet Viewer

 http://www.nitrc.org/projects/bnv/ ) ( Xia et al. (2013) ). 

. Results 

.1. Community detection 

We first performed per-subject community detection to extract per-
onalized meta-states in order to enable the computation of accurate
AS and ICT for each subject. Fig. 3 shows histograms with the num-
er of communities that were found for the subjects in all groups and
requency bands. No statistically significant differences between groups
or the distributions of the number of meta-states were found in any
and ( 𝑝 > . 05 , Chi-squared test). It can be observed that the number of
etected meta-states detected varied between 2 and 5. In the delta and
heta bands, most subjects showed 4 meta-state network configurations,
hile in alpha, beta-1, and beta-2 the majority of subjects displayed 3
eta-states 

Subsequently, per-group community detection was also performed
o find generalized brain networks that encompassed the meta-states of

http://www.nitrc.org/projects/bnv/
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Fig. 3. Histograms depicting the number of communities (meta-states) detected by the Louvain GJA algorithm for all subjects and frequency bands. 

Fig. 4. Group meta-states for controls, patients with MCI, and patients with AD in the alpha band. Panel A shows brain plots with the 5% strongest connections of 
the meta-states obtained from performing community detection by means of the Louvain GJA method in RPs built from the data-driven windows of all subjects in a 
group (per-group community detection). Panel B displays the same meta-states as a matrix representation, where each axis represents the ROIs in the Desikan-Killiany 
atlas. 
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ll subjects in a group. The meta-states found for each group in the al-
ha band are shown in Fig. 4 (the correspondence with specific ROIs in
he Desikan-Killiany atlas for each row/column is displayed in figure S2
f the supplementary material). Spearman correlations between meta-
tates were also performed to assess spatial similarity, and are included
n tables ST1 to ST3 of the supplementary material. We only display
ere the alpha-band meta-states, since it was the band where between-
roup differences were found for TAS-based measures (see the following
ection). The meta-states for the remaining bands (with the exception
f beta-2, since community detection proved to be computationally un-
easible due to the large size of the whole-group RPs in this band) are
hown in supplementary material figures S3 to S5. The meta-states are
rdered according to the total number of appearances across time for all
he subjects in the group. The results in the alpha band show three main
eta-states for all groups: a frontal network with left-parietal connec-

ions (IAC meta-state 1), a predominantly parietal network with frontal
onnections (IAC meta-state 2), and a right-temporal network with some
eft-temporal, parietal and occipital connections (IAC meta-state 3). 

.2. Between-group comparisons for meta-state activation metrics 

Fig. 5 displays the normalized average dwell time, TAS complexity,
verage and standard deviation of the ICS, average leap size, and aver-
7 
ge modularity values for all frequency bands. Statistically significant
ifferences were mostly found in the alpha band for most of the mea-
ures. 

Average dwell time. Statistically significant between group differ-
nces were found in the alpha band ( 𝑝 = . 041 , Kruskal-Wallis test, FDR
orrected p -values). The control group displayed the longest dwell times
f all three groups, with the post-hoc analysis showing that they were
onger on average than for the ones for patients with MCI ( 𝑝 = . 055 ,
ann-Whitney U -test, FDR corrected p -values) and dementia due to
D ( 𝑝 = . 007 , Mann-Whitney U -test, FDR corrected p -values). The con-

rols were also the group with the highest proportion of subjects having
onger average dwell times than those obtained with surrogate data. 

TAS complexity. In the theta, alpha, beta-1, and beta-2 bands, most
ubjects displayed lower TAS complexity values than obtained for the
urrogate data. This is the expected result, since it indicates a lower num-
er of possible symbolic strings, in line with the concept of the system
eturning (and staying for a while) in previous states, as opposed to a
urrogate with similar meta-states (sFC is not destroyed by AAFT, so the
patial patterns of meta-states are similar to the ones in the original time
eries), but no underlying dynamic structure. Statistically significant be-
ween group differences were found in the alpha band ( 𝑝 = . 026 , Kruskal-

allis test, FDR corrected p -values). The post-hoc analysis revealed that
ontrols had a less complex TAS sequence compared to both patients
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Fig. 5. Distribution plots depicting normalized (A) average dwell time, (B) TAS complexity, (C) average ICS, (D) standard deviation of the ICS, (E) average leap 
size, and (F) average modularity. The values were normalized by dividing the raw values by the average values extracted from 100 amplitude-adjusted Fourier 
transform (AAFT) surrogate versions of the original data. Values above the red line correspond to greater observed values for the original time series than for the 
surrogates (and vice-versa). Statistically significant between-group differences are marked with blue rectangles ( 𝑝 < . 05 , Kruskal-Wallis test, FDR corrected p -values), 
while differences that were significant before FDR correction ( 𝑝 < . 05 , Kruskal-Wallis test) are marked with dashed blue rectangles. Statistically significant post-hoc 
pairwise differences are marked with red brackets ( 𝑝 < . 05 , Mann-Whitney U -test, FDR corrected p -values). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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ith MCI ( 𝑝 = . 007 , Mann-Whitney U -test, FDR corrected p -values) and
ementia due to AD ( 𝑝 = . 043 , Mann-Whitney U -test, FDR corrected p -
alues). Interestingly, patients with MCI showed values closer to the
urrogates than patients with dementia due AD. 

Mean and standard deviation of the ICS. The mean ICS showed no
tatistically significant differences between groups in any band ( 𝑝 > . 05 ,
ruskal-Wallis test, FDR corrected p -values). Furthermore, around half
f the subjects displayed values that were similar to those for the sur-
ogates, indicating that the mean ICS is not affected by the dynamic
ehavior of resting-state EEG activity. In contrast, the standard devi-
tion of the ICS was, for most of the subjects, higher than expected
f surrogate data, meaning dFC has an effect on speed variability. The
lpha band showed statistically significant group differences ( 𝑝 = . 006 ,
ruskal-Wallis test, FDR corrected p -values), but only the MCI group
isplayed a statistically significant lower variability of the ICS than the
ontrol group ( 𝑝 < . 001 , Mann-Whitney U -test, FDR corrected p -values).

Average leap size. No statistically significant differences were found
n any band, although the alpha band lost its statistical significance af-
er FDR correction ( 𝑝 = . 1 , Kruskal-Wallis test, FDR corrected p -values),
ith controls showing a higher meta-state transition cost than patients
ith MCI ( 𝑝 = . 022 , Mann-Whitney U -test, FDR corrected p -values). 

Average modularity. Statistically significant differences were found
n the alpha ( 𝑝 < . 001 , Kruskal-Wallis test) and beta-1 bands ( 𝑝 = . 055 ,
ruskal-Wallis test). Furthermore, controls showed higher modularity
alues than patients with MCI (alpha: 𝑝 = . 03 , beta: 𝑝 = . 03 , Mann-
hitney U -test, FDR corrected p -values), and patients with dementia

ue to AD in both bands (alpha: 𝑝 < . 001 , beta-1: 𝑝 < . 001 , Mann-Whitney
 -test, FDR corrected p -values) indicating that the meta-states were
ore separated and better defined for the controls. 
a  

8 
In order to test whether the mismatch in education level could have
n effect on between-group comparisons, we tested for statistical dif-
erences in grand-average mean dwell time, TAS complexity, mean and
tandard deviation of the ICS, leap size and modularity between subjects
ith education level A and B for all groups (Mann-Whitney U -test). No

tatistical differences for any of the measures in any group or band were
ound ( 𝑝 > . 05 ). 

. Discussion 

We adopted a novel approach to investigate the dynamic formation
f specific brain networks during rest by capturing aspects based on both
he discrete activation of brain meta-states and the continuous descrip-
ion of the evolution of the meta-state strength. Our findings show that:
i) the proposed methodology is able to find meaningful meta-states in
esting-state EEG recordings (ii) MCI and AD do not affect the spatial
rofile of the main meta-states that appear during rest, but they are less
ell defined; (iii) MCI and AD meta-states are briefer and less dynami-

ally structured than those of cognitively healthy elderly controls; and
iv) healthy controls display a higher dynamic flexibility than patients
ith MCI, as their brain networks are more dynamically pulled towards
eta-states (attractors). 

.1. Detection and characterization of group meta-states 

Our first objective was to identify dynamic functional meta-states
n the EEG activity of the population under study. When conducting a
hole-group analysis in the alpha band, 3 meta-states were found for all
roups. One must exercise caution when identifying these meta-states
s specific resting-state networks, since the more well-known ones are
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sually based on blood-oxygen-level dependent imaging (BOLD), not
n EEG ( Damoiseaux et al., 2006 ). For all three groups (controls, MCI,
nd AD), the number of communities converged to 3 as the frequency
ncreased. The number of available data-driven windows increases with
requency, and graph community detection algorithms usually behave
etter with larger graphs ( Gates et al., 2016 ). Thus, we hypothesized
hat the number of dominant group meta-states with Louvain GJA as
he community detection algorithm in the 60-s EEG recordings is closer
o 3. In order to test this, we performed an additional test on the 16
ontrol subjects who had two minutes of artifact-free EEG recordings
vailable. We performed the same community detection as in the main
tudy but changed the length of the analyzed data-segment from 1 to
20 s in steps of 1 s. The results (supplementary material figure S6)
how a clear convergence to 3 communities in the theta, alpha, beta-1,
nd beta-2 bands. We did not perform this analysis in the delta band
ue to the data segment not being long enough to define data-driven
indows for very short epochs. 

Our results suggest that MCI and AD do not directly affect the
global ” EEG spatial patterns of resting-state networks themselves. How-
ver, the alpha and beta-1 modularity decrease found in MCI and AD
uggests that their EEG resting-state networks are more diffuse and less
ell defined, i.e., the networks that dynamically form and dissolve are
ot as well differentiated in MCI and AD compared to healthy elderly
ontrols. Interestingly, average sFC IAC values were lower in controls
ompared to patients with MCI and dementia due to AD in the alpha
and (see supplementary material figure S7). This result could imply
hat MCI and AD induce global alpha hyperconnectivity that is associ-
ted with loss of network definition. It is worth noting that disparate re-
ults can be found in the literature when it comes to sFC in MCI and AD:
hile some studies have also found hyperconnectivity between specific
rain regions in patients with AD ( Fu et al., 2019 ) and in early stages
f dementia ( Bonanni et al., 2020 ), the opposite behavior has been re-
orted as well ( Babiloni et al., 2016b; Briels et al., 2020 ). Nonetheless, it
s worth mentioning that when computing AEC based on a sliding win-
ow approach (with window sizes of 0.5, 15 and 60 s, see supplementary
aterial figure S8) we found that the results showed a decrease in sFC

n the alpha band for patients with AD for sliding window sizes of 15
nd 60 s. This disagreement could be due to a variety of reasons, such as
he fact that IAC is more suitable for the characterization of fast connec-
ivity than AEC Tewarie et al. (2019) . It could also be the case that AD
nduces an increase in very fast bursts of instantaneous connectivity that
re canceled when averaging across long windows. This is supported by
he fact that simulations have shown that AEC correlation with ground
ruth states was maximal for window lengths that matched state dura-
ion Liuzzi et al. (2019) . We also calculated the Spearman correlation
etween the average IAC and the relative power of each band and found
hat they were weak and not statistically significant (see supplementary
aterial figure S9). Moreover, there were statistically significant differ-

nces in relative power between groups in the theta and beta-1 bands,
ith patients with AD showing clear power shifts towards lower fre-
uencies and patients with MCI also displaying these shifts to a lesser
egree (see supplementary material figure S10). Crucially, there were no
tatistically significant differences in alpha relative power, which sup-
orts the notion that instantaneous FC is less affected by relative power
han traditional windowed FC. Additionally, scalp topographies of the
elative power of each group meta-state in the alpha band were obtained
see supplementary material figure S11) and no statistically significant
ifferences in relative power between meta-states was found, indicat-
ng that network activation patterns appear to be independent from raw
ower. 

We also obtained scalp topographies of the meta-states in the al-
ha band in order to compare with traditional EEG microstates and
ssess possible relationships between them and network meta-sates
 Khanna et al., 2015 ). The scalp topographies were obtained by aver-
ging the EEG time-series from the 19 scalp recordings in each of the
ata-driven windows. Then, the windowed EEG was averaged again for
9 
ll the data-driven windows corresponding to each specific meta-state
see supplementary material figure S12). The scalp topographies corre-
ponding to each meta-state were different for each group, and for the
ost part did not resemble the four traditional EEG microstate topolo-

ies. Possible exceptions are control meta-state 1, which resembles mi-
rostate D, AD meta-state 1 and MCI meta-state 3, which resemble mi-
rostate C, and AD meta-states 2 and 3, which resemble microstate B
 Khanna et al., 2015 ). This suggests that source-level network meta-
tates are independent from scalp activation to some extent. 

Our results do not necessarily mean that the brain only passes
hrough 3 meta-states during rest, but that these 3 topologies were the
redominant ones on the EEG time scale. Interestingly, an fMRI-based
tudy that performed community detection with a similar method also
ound 3 states in healthy young subjects ( Zhou et al., 2019 ). Another
MRI study obtained an optimal number of 3 communities using k -means
lustering to detect functional states in patients with AD and dementia
ith Lewy bodies ( Schumacher et al., 2019 ). Other fMRI studies that
ave tried to identify meta-states found different numbers of FC states.
or example, Cabral et al. found 5 FC states in healthy controls dur-
ng rest with their Leading Eigenvector Dynamic Analysis methodology
 Cabral et al., 2017 ), while Fu et al. found 4 states in controls, patients
ith AD, and patients with subcortical ischemic vascular disease using k -
eans clustering ( Fu et al., 2019 ). We hypothesize that the 3 meta-states

haracterized by our methodology are a dominant subset from the full
epertoire that could be detectable with other techniques, like the ones
reviously mentioned or Hidden Markov Models (see Baker et al. (2014) ;
unyadi et al. (2019) ; Vidaurre et al. (2018) ). Furthermore, the results
o not necessarily imply that all subjects displayed the same individ-
al meta-states. When taken together, the individual network configura-
ions aggregate into 3 meta-states that can be seen as a “summary ” of the
nderlying networks. However, one must take into account that these
eta-states were computed as the average of a large number of win-
ows that belong to different subjects. Thus, individual idiosyncrasies
r subtle differences are lost in these group meta-states ( Hutchison et al.,
013 ). Some subject-specific states also get lost when performing whole-
roup community detection ( Gu et al., 2020; Schumacher et al., 2019 ),
hich explains the apparent discrepancy between the number of whole-
roup meta-states and some subjects who showed 4 individual meta-
tates. 

It was also observed that, while the ongoing resting-state EEG always
as a dominant meta-state, the ICT shows that the instantaneous FC is
ften correlated with more than one network configuration. This leads
s to believe that meta-states are not mutually exclusive and are more a
epresentation of individual, well-defined network configurations that
an be simultaneously active. This is in line with non-negative tensor
actorization analyses, in which all the states are active at all times,
nly with different strengths ( Ponce-Alvarez et al., 2015; Tewarie et al.,
019 ). These transient states emerge and dissolve in a non-discrete fash-
on, just as they do in the present study. Thus, our results support the no-
ion of the brain being a metastable system in which the meta-states act
s attractors which pull the functional network with variable strength,
ut never settle for long into a specific one ( Tognoli and Kelso, 2014;
ohryzek et al., 2020 ). 

.2. MCI- And AD-induced alterations to dynamic meta-state switching 

The second objective of the study was to explore how MCI and AD
ight influence normal meta-state sequences during rest. The results for

he average dwell time, TAS complexity, and standard deviation of the
CS in the alpha band confirm our hypothesis that these diseases may
nduce a loss in dynamic state fluctuations and break the underlying
tructure of the state sequences. 

We already found evidence of the presence of dFC in cognitively
ealthy elderly controls, patients with MCI, and patients with demen-
ia due to AD in a previous work, in which dFC was measured by
eans of sliding windows and the amplitude envelope correlation (AEC)
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 Núñez et al., 2019b ). The present study further strengthens those find-
ngs. The less due to dFC the observed measures of meta-state shifting
re, the closer the values of each extracted measure will be to 1. Thus,
t is clear from the results that brain meta-state shifting in patients with
CI and AD is more unstable and less structured, and more influenced

y sFC and other factors than in the controls. The importance of conduct-
ng surrogate testing when assessing the presence of dFC-related metrics
annot be understated. If one does not normalize, the results can be mis-
eading and reflect differences that can be due to random fluctuations
n static FC ( Hindriks et al., 2016 ). To test this, we conducted two ad-
itional tests: first, we performed the same between-group comparisons
or the surrogate data alone (see supplementary material figure S13),
nd we found statistically significant differences in the theta and beta-1
ands, but not in alpha. The between-group differences could be due
o differences in power, static FC, or even noisier segments for patients
ith AD. However, the values in alpha for most measures show statisti-

ally significant differences after normalizing by means of the surrogate
ata. This indicates that these differences should be almost entirely due
o dFC. Secondly, we compared the original, non-normalized values of
ll the measures for the three groups separately with the average of their
orresponding surrogate data (see supplementary material figures S14
o S16). For the control group there were statistically significant differ-
nces between the measures derived from the original time-series and
he ones derived from the surrogates in alpha for all measures except
he mean of the ICS (which did not show statistically significant differ-
nces between groups after normalization either). This further supports
he notion that the differences in the alpha band are due to differences
n dFC between groups, and, in some cases, due to the lack of alpha dFC
n the MCI and AD groups. 

We observed that average dwell times were significantly lower for
atients with MCI and AD compared with controls. Previous research
as already shown AD patients spending less time in default mode net-
ork states ( Jones et al., 2012 ). Some fMRI studies found evidence of
atients with AD having shorter dwell times in baseline states and longer
imes in weaker states ( Fu et al., 2019; Gu et al., 2020 ). Our study does
ot distinguish between these two types of states (weakly and strongly
onnected), but our findings point to EEG meta-states being more tran-
ient in MCI and AD. We speculate that this could be related to how
eta-states are less defined in these groups, which could lead to them

dominating ” over others for shorter times. If the assumption is made
hat each meta-state corresponds to a specific active module focused on
 functional quality ( Jones et al., 2012 ), then this might mean that the
CI and AD brain is associated with more unstable cognition. However,

lternative explanations must be considered as well; it may be possible
hat more transient meta-states could be a sign of more flexible cognition
n patients with MCI and AD, perhaps as a compensatory mechanism,
lthough such behavior has usually only been suggested in patients with
CI and preclinical or early AD ( Gaubert et al., 2019; Jones et al., 2016;
aestú et al., 2011 ). 

We hypothesize that the TAS complexity results are evidence of the
xistence of an underlying structure in the sequence of meta-states in
ealthy controls. Controls show a relatively limited amount of possible
eta-state sequences when compared to the pathological groups. This
nding suggests that meta-state sequencing is not entirely arbitrary. The

act that meta-state transitions are not completely random has been pre-
iously suggested ( Vidaurre et al., 2017 ). Thus, it can be inferred that
CI and AD induce changes into these meta-state transition sequences

eading to a loss of some of their structure and an increase of their
andomness. It has been observed that staying in the same meta-state
or consecutive windows could be a way to keep transition networks
ost-efficient ( Ramirez-Mahaluf et al., 2020; Zalesky et al., 2014 ). Fur-
hermore, higher cognition has also been correlated with efficient plan-
ing of meta-state switching ( Ramirez-Mahaluf et al., 2020 ). It is impor-
ant to highlight that the TAS complexity measures the complexity of
he symbolic activation sequence of the meta-state activation patterns,
ot the raw EEG data, since EEG complexity has been found to be re-
10 
uced in AD when compared to controls ( Abásolo et al., 2006 ). Although
e observed that the control group showed a tendency towards higher
etabolic cost when transitioning to another dominant meta-state, they

tayed in the same dominant state for longer times. This could indicate
hat controls make fewer, but more substantial meta-state transitions
han patients with MCI or dementia due to AD. 

Our results showed that the mean ICS is not a property intrinsically
ue to dFC and thus cannot be associated with any MCI- or AD-induced
lterations in dynamic network switching. However, the higher standard
eviation of the ICS in controls compared to MCI points to a deficit of
lpha dynamic brain flexibility that is at least partially recovered in
ubjects that have progressed to AD. In a previous study (conducted at
calp-level), we found an overall decrease in alpha non-stationarity in
atients with MCI that was more pronounced than in patients with AD
 Núñez et al., 2020 ). We speculate that the reduced dynamic flexibility
ay be related to the more stationary sensor-level EEG activity, which

ould be linked to the hypothesis that MCI displays excessive neuronal
ctivity possibly leading to amyloid deposition ( de Haan et al., 2012 ).
n this case, excessive, stationary activity would lead to steadier and
ess fluctuating movement between network configurations, with less
udden changes in attraction towards specific meta-states. 

In order to assess the reliability of the methodology, we repeated the
hole procedure on the second minute of resting-state activity and the

ull 120-s segments, on the subjects that had two minutes of artifact-free
EG data available (16 controls, 29 patients with MCI and 27 patients
ith AD). The main results are displayed in supplementary material fig-
res S17 and S19 (group meta-states in the alpha band for the second
inute of activity and the full 120-s segment respectively), as well as

18 and S20 (between-group comparisons for the normalized measures,
or the second minute of activity and the full 120-s segment respec-
ively). The group meta-states closely resemble the ones found for the
ull database, with small differences in network topology most likely due
o the small number of subjects (especially for the control group). No
tatistically significant differences were found, most likely due to the
educed number of subjects when compared to the full database. The
verall tendencies for all measures, however, were the same as in the
ain results. 

Several studies have tried to characterize the mechanisms of dynamic
ntegration of information that occur at the system-level by means of
omputational modeling Cabral et al. (2014) ; Deco et al. (2017a, 2013) .
hese resting-state models share the common trait that structured fluc-
uations emerge when the system is at a point of bifurcation, or point
f criticality, between steady state and oscillatory regime where mul-
istable states appear Cabral et al. (2014) ; Deco et al. (2017a, 2013) .
his remarkably fits with our findings of attractors that dynamically
ull the system into meta-states. Moreover, it has also been shown that
scillator-based models modulate frequency-specific amplitude fluctua-
ions and show good fit with empirical MEG data Cabral et al. (2014) ;
eco et al. (2017a) . In this respect, our findings are in line with the
ehavior reported in these studies, since the alterations in dynamic
lpha IAC patterns could be linked to impairment of meta-stable for-
ation of large-scale networks in MCI and AD. These would lead to
iminished correlated amplitude fluctuations in this frequency band
abral et al. (2014) ; Deco et al. (2017a) . 

.3. Limitations and future research lines 

This study has several limitations that merit further attention. Firstly,
e tried to solve the well-known problem of having to choose a window

ize to measure dFC by means of sliding windows by using a measure
f instantaneous FC (i.e., IAC). However, these measures come with
he hurdle of lower SNR, as well as higher memory requirements for
omputational processing of the connectivity matrices. We used data-
riven windows based on RPs to address both issues. However, alter-
ative methods to build data-driven windows could be explored in fu-
ure works, such as single-scale time-dependent windows ( Zhuang et al.,
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020 ). It is also worth mentioning that the IAC is not sensitive to os-
illation power, and Hidden Markov Model-based studies have found
tates that are characterized by increased or decreased oscillation power
aker et al. (2014) . Thus, it could be the case that due to the limitations
f IAC some meta-states could be obfuscated. 

The method proposed in this study is not without its limitations. Even
hough the between-group comparisons survive FDR statistical correc-
ion, this does not mean that improvements could not be made to the
rocessing pipeline. In particular, it is possible that our method lacks
ensitivity which could lead to the detection of fewer states than the ones
hat are present. We used the Louvain GJA algorithm to detect communi-
ies in the RPs due to its advantages, although this algorithm has some
imitations (both are indicated in Section 3.2.3 ) ( Gates et al., 2016 ).
t would be interesting to analyze whether other community detection
lgorithms, such as Walktrap, Newman’s Spectral Approach, Infomap,
abel Propagation or non-backtracking matrix ( Gates et al., 2016; Krza-
ala et al., 2013 ), lead to similar results. It is possible, however, that
ther community detection methods could lead to an increased number
f false positives. Of note, we characterized how the recording length
ffected the number of communities that the Louvain GJA detected (see
upplementary Material figure S6). We found that it converged to three
n the theta, alpha, beta-1, and beta-2 bands. Thus, observing how the
ommunities detected vary according to each algorithm could be an in-
eresting study in itself, since it could be possible that some algorithms
ould identify more meta-states or have more reproducible results. 

While it is not possible to characterize the specific properties, such
s average dwell time, inter-state intervals or fractional occupancy of
he “group ” meta-states, due to the fact that they are not specifically as-
ociated to specific “per-subject ” meta-states, it has been reported that
ome MEG states, such as those in the bilateral default and dorsal atten-
ion networks, have reduced duration in patients with AD compared to
ognitively healthy controls ( Sitnikova et al., 2018 ). It would be inter-
sting to perform an analysis where meta-state characterization is done
nly at the group level. This would enable direct comparison between
he specific state properties of each group, while losing the precision
hat per-subject meta-state characterization facilitates. 

Due to the exploratory nature of the study, and the fact that the
etrics of meta-state correlation were measuring relatively independent
roperties of the dynamic activation of meta-states, we only corrected
he p -values for the number of bands. However, a stricter correction for
he global interactions was also performed (correcting for the number of
ands and the number of measures) and is included in the supplemen-
ary material (table ST4). With this strict correction, the average dwell
ime and the TAS complexity lose statistically significant differences in
he alpha band ( 𝑝 = . 062 and 𝑝 = . 053 respectively), and the modularity
oses statistically significant differences in the beta-1 band ( 𝑝 = . 110 ). 

The influence of sFC was minimized by the use of surrogate normal-
zation, but the fact that the behavioral variability found in patients with
CI and dementia due to AD could be underpinned by sFC and struc-

ural connectivity cannot be overlooked. It might be the case that the
etween-group differences explained by dFC could be, at least partially,
ndirectly caused by abnormal sFC and structural connectivity. Both of
hese have been previously observed in patients with MCI and dementia
ue to AD Pineda-Pardo et al. (2014) , and account for the majority of
he variance in fMRI data from individuals Vidaurre et al. (2019) . Thus,
t is important to point out that structural connectivity, sFC and dFC are
omplementary techniques, with dFC having been associated with be-
avioral traits not dominated by anatomy, but more complex cognitive
unctions Vidaurre et al. (2019) . 

Another interesting research line could be replicating the results
ith different databases, not only EEG-based but MEG ones as well.
EG signals are less sensitive to field spread and volume conduction

 Lai et al., 2018 ). An important limitation of the study is the fact that
he 68 ROI time-courses were estimated from 19 EEG channels. Due
o the limited spatial resolution of the source estimation, we avoided
ver-interpretation of the results by refering to relatively broad areas
11 
e.g., left-temporal) instead of specific ROIs of the Desikan-Killiany at-
as. Nonetheless, it is noteworthy that the meta-states that we extracted
losely resemble some of the meta-states found for an MEG database
sing non-negative tensor factorization ( Tewarie et al., 2019 ). 

Finally, since the patients with MCI can usually be separated into
wo subgroups (the ones that eventually developed AD and the ones
hat remain stable in MCI condition), when that information becomes
vailable, it would be of interest to investigate whether the two sub-
roups are closer in meta-state behavior to the controls and the patients
ith AD, respectively. This could thereby identify early signs of neu-

odegeneration that are specific to AD in the MCI-AD continuum. To
chieve this, it would also be interesting to expand the database so that
ll patient subgroups and the control group can be matched in number
f subjects. 

. Conclusion 

In the present study, we applied a novel methodology to detect meta-
tates and their temporal sequencing in resting-state EEG recordings
rom controls, as well as patients with MCI and dementia due to AD. Our
pproach revealed that MCI and AD do not change the network topol-
gy of the main meta-states, but they induce a loss of flexibility and
efinition of neural networks when the brain moves through meta-state
pace. These alterations are characterized by a decrease in modularity,
horter dominant meta-state dwell times, diminished metabolic cost of
tate transition, and decrease in variability of the correlation speed. All
hese results point to an overall more erratic dynamic behavior of the
rain during rest, coupled with weaker meta-state differentiation, pos-
ibly associated with unstable cognition. Furthermore, we also showed
hat dynamic state switching is not entirely random, with an underlying
ransition sequence structure that is also partially lost as the MCI-AD
ontinuum progresses. We believe this work could be a starting step to-
ards a comprehensive characterization of the spatio-temporal dynam-

cs of functional network switching in the MCI-AD continuum. 
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