Ethanol; Foam-template; HLB; Oleogels; Sucrose esters; Esters; oleogels; Sucrose; Emulsifying Agents; Alternative routes; Ethanol routes; High hardness; Hydrophilic lipophilic balance; Oleogel; Property; Structuration; Template approach; Analytical Chemistry; Food Science; General Medicine
Abstract :
[en] Sucrose esters (SE) have been widely studied as emulsifiers to tailor crystallization in fats. Nevertheless, few studies have assessed the potential of SEs as oleogelators to structure oleogels. This study aimed to evaluate alternative routes that would improve the oleogelation capacity of commercial SEs with different Hydrophilic-lipophilic balance (HLB) values and evaluate the physical properties of the oleogels produced by different routes. Four SEs were evaluated (SP10-HLB2, SP30-HLB6, SP50-HLB11, and SP70-HLB15) using three oleogelation routes (traditional or melting, ethanol, and foam-template). Of all evaluated samples, only the SP50 ethanol route with 10 % SE showed a solid-like structure. This sample presented the highest hardness (0.4 ± 0.1 N) and elastic modulus (4589 ± 89 Pa). SP70 showed a potential oleogel after foam-template approach due to the higher oil binding capacity. SP10 was the only directly completely soluble SE in oil, although it formed a very liquid gel. SP30 did not show a potential or oleogel structure for any of the routes tested.
Disciplines :
Food science
Author, co-author :
da Silva, Thais Lomonaco Teodoro; Science des Aliments et Formulation, Gembloux Agro-Bio Tech, ULiège, 5030 Gembloux, Belgium. Electronic address: tltdsilva@uliege.be
Baeten, Vincent; Quality and Authentication of Products Unit, Quality Department of Agricultural Products, Walloon Agricultural Research Centre (CRA-W), Chaussé de Namur 24, 5030 Gembloux, Belgium
Danthine, Sabine ; Université de Liège - ULiège > TERRA Research Centre > Smart Technologies for Food and Biobased Products (SMARTECH)
Language :
English
Title :
Modifying sucrose esters oleogels properties using different structuration routes.
The authors are grateful for the Postdoctoral fellowships and funding in Sciences, Technology, Engineering, Materials, and Agrobiotechnology (STEMA) funding OTP N° DIVE.0899-J-P gave by ULiège University Research Council. The authors also thanks Quentin Arnould from CRA-W for the support in the MIR analysis.
Abdollahi, M., Goli, S.A.H., Soltanizadeh, N., Physicochemical properties of foam-templated oleogel based on gelatin and xanthan gum. European Journal of Lipid Science and Technology 122:2 (2020), 1–9, 10.1002/ejlt.201900196.
Blake, A.I., Co, E.D., Marangoni, A.G., Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. Journal of the American Oil Chemists’ Society 91:6 (2014), 885–903, 10.1007/s11746-014-2435-0.
Blake, A.I., Marangoni, A.G., The use of cooling rate to engineer the microstructure and oil binding capacity of wax crystal networks. Food Biophysics 10 (2015), 456–465, 10.1007/s11483-015-9409-0.
Chansanroj, K., Betz, G., Sucrose esters with various hydrophilic-lipophilic properties: Novel controlled release agents for oral drug delivery matrix tablets prepared by direct compaction. Acta Biomaterialia 6:8 (2010), 3101–3109, 10.1016/j.actbio.2010.01.044.
Cheng, J., Kan, Q., Cao, J., Dudu, O. E., & Yan, T. (2021). Interfacial compositions of fat globules modulate coconut oil crystallization behavior and stability of whipped-frozen emulsions. Food Hydrocolloids, 114(December 2020), 106580. https://doi.org/10.1016/j.foodhyd.2020.106580.
Co, E., Marangoni, A.G., Organogels: An alternative edible oil-structuring method. Journal of the American Oil Chemists’ Society 89 (2012), 749–780, 10.1007/s11746-012-2049-3.
da Silva, T.L.T., Danthine, S., Effect of high-intensity ultrasound on the oleogelation and physical properties of high melting point monoglycerides and triglycerides oleogels. Journal of Food Science 86:2 (2021), 343–356, 10.1111/1750-3841.15589.
Doan, C.D., Davy, V.D.W., Patel, A.R., Dewettinck, K., Evaluating the oil - Gelling properties of natural waxes in rice bran oil: Rheological, thermal, and microstructural study. Journal of the American Oil Chemists’ Society 92 (2015), 801–811, 10.1007/s11746-015-2645-0.
Domingues, M.A.F., Da Silva, T.L.T., Ribeiro, A.P.B., Chiu, M.C., Gonçalves, L.A.G., Structural characteristics of crystals formed in palm oil using sorbitan tristearate and sucrose stearate. International Journal of Food Properties 21:1 (2018), 618–632, 10.1080/10942912.2018.1440237.
Fayaz, G., Calligaris, S., Nicoli, M.C., Comparative study on the ability of different oleogelators to structure sunflower oil. Food Biophysics 15 (2020), 42–49, 10.1007/s11483-019-09597-9.
Fontenele Domingues, M.A., Badan Ribeiro, A.P., Chiu, M.C., Gonçalves, L.A.G., Sorbitan and sucrose esters as modifiers of the solidification properties of zero trans fats. LWT - Food Science and Technology 62:1 (2015), 122–130, 10.1016/j.lwt.2015.01.008.
Garbolino, C., Bartoccini, M., Flöter, E., The influence of emulsifiers on the crystallisation behaviour of a palm oil-based blend. European Journal of Lipid Science and Technology 107:9 (2005), 616–626, 10.1002/ejlt.200501186.
Garti, N., Clement, V., Leser, M., Aserin, A., Fanun, M., Sucrose ester microemulsions. Journal of Molecular Liquids 80:2–3 (1999), 253–296, 10.1016/s0167-7322(99)80010-5.
Golodnizky, D., Davidovich-Pinhas, M., The effect of the HLB value of sucrose ester on physiochemical properties of bigel systems. Foods 9:12 (2020), 1–20, 10.3390/foods9121857.
Guillen, M.D., Cabo, N., Infrared spectroscopy in the study of edible oils and fats. Joutnal of the Science of Food and Agriculture 75 (1997), 1–11, 10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R.
Husband, F.A., Sarney, D.B., Barnard, M.J., Wilde, P.J., Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations. Food Hydrocolloids 12:2 (1998), 237–244, 10.1016/S0268-005X(98)00036-8.
Jandacek, R.J., Webb, M.R., Physical properties of pure sucrose octaesters. Chemistry and Physics of Lipids 22 (1978), 163–176.
Kawaguchi, T., Hamanaka, T., Kito, Y., Machida, H., Structural studies of a homologous series of alkyl sucrose ester micelle by X-ray scattering. Journal of Physical Chemistry 95:9 (1991), 3837–3846, 10.1021/j100162a073.
Kerr, R. M., Tombokan, X., Ghosh, S., & Martini, S. (2011). Crystallization behavior of anhydrous milk fat - sunflower oil wax blends. Journal of Agricultural and Food Chemistry, 59, 2689–2695. https://doi.org/doi/abs/10.1021/jf1046046.
Kondamudi, N., McDougal, O.M., Microwave-assisted synthesis and characterization of stearic acid sucrose ester: A bio-based surfactant. Journal of Surfactants and Detergents 22:4 (2019), 721–729, 10.1002/jsde.12280.
Liu, Y., Binks, B.P., A novel strategy to fabricate stable oil foams with sucrose ester surfactant. Journal of Colloid and Interface Science 594 (2021), 204–216, 10.1016/j.jcis.2021.03.021.
Lopez, C., Lesieur, P., Bourgaux, C., Ollivon, M., Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate. Journal of Dairy Science 88:2 (2005), 511–526, 10.3168/jds.S0022-0302(05)72713-2.
Lu, M., Cao, Y., Ho, C.T., Huang, Q., Development of organogel-derived capsaicin nanoemulsion with improved bioaccessibility and reduced gastric mucosa irritation. Journal of Agricultural and Food Chemistry 64:23 (2016), 4735–4741, 10.1021/acs.jafc.6b01095.
Nelen, B.A.P., Bax, L., Cooper, J.M., Sucrose esters. Emulsifiers in Food Technology: Second Edition, 2015, 147–180, 10.1002/9781118921265.ch7.
Patel, A.R., Stable “arrested” non-aqueous edible foams based on food emulsifiers. Food and Function 8:6 (2017), 2115–2120, 10.1039/c7fo00187h.
Patel, A.R., Dewettinck, K., Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European Journal of Lipid Science and Technology 117:11 (2015), 1772–1781, 10.1002/ejlt.201400553.
Patel, A.R., Schatteman, D., Lesaffer, A., Dewettinck, K., A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances 3:45 (2013), 22900–22903, 10.1039/c3ra44763d.
Rincón-Cardona, J.A., Agudelo-Laverde, L.M., Martini, S., Candal, R.J., Herrera, M.L., In situ synchrotron radiation X-ray scattering study on the effect of a stearic sucrose ester on polymorphic behavior of a new sunflower oil variety. Food Research International 64 (2014), 9–17, 10.1016/j.foodres.2014.05.076.
Rodriguez-Abreu, C., Aramaki, K., Tanaka, Y., Lopez-Quintela, M.A., Ishitobi, M., Kunieda, H., Wormlike micelles and microemulsions in aqueous mixtures of sucrose esters and nonionic cosurfactants. Journal of Colloid and Interface Science 291:2 (2005), 560–569, 10.1016/j.jcis.2005.05.018.
Rodríguez-Negrette, A.C., Rodríguez-Batiller, M.J., García-Londoño, V.A., Borroni, V., Candal, R.J., Herrera, M.L., Effect of sucrose esters on polymorphic behavior and crystallization kinetics of cupuassu fat and its fractions. JAOCS, Journal of the American Oil Chemists’ Society, 2021, 1–15, 10.1002/aocs.12541.
Sintang, M.D.B., Bin, S., Patel, A.R., Rimaux, T., Van De Walle, D., Dewettinck, K., Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. Journal of Colloid And Interface Science 504 (2017), 387–396, 10.1016/j.jcis.2017.05.114.
Soultani, S., Ognier, S., Engasser, J.M., Ghoul, M., Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 227:1–3 (2003), 35–44, 10.1016/S0927-7757(03)00360-1.
Szuts, A., Budai-Szucs, M., Eros, I., Ambrus, R., Otomo, N., Szabó-Révész, P., Study of thermo-sensitive gel-forming properties of sucrose stearates. Journal of Excipients and Food Chemicals 1:2 (2010), 13–20.
Szuts, A., Pallagi, E., Regdon, G., Aigner, Z., Szabó-Révész, P., Study of thermal behaviour of sugar esters. International Journal of Pharmaceutics 336:2 (2007), 199–207, 10.1016/j.ijpharm.2006.11.053.
Szuts, A., Szabó-Révész, P., Sucrose esters as natural surfactants in drug delivery systems—A mini-review. International Journal of Pharmaceutics 433 (2012), 1–9, 10.1016/j.ijpharm.2012.04.076.
Tangsanthatkun, J., Sonwai, S., Crystallisation of palm olein under the influence of sucrose esters. International Journal of Food Science and Technology 54:11 (2019), 3032–3041, 10.1111/ijfs.14216.
Tavernier, I., Doan, C.D., Van de Walle, D., Danthine, S., Rimaux, T., Dewettinck, K., Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. The Royal Society of Chemistry 7 (2017), 12113–12125, 10.1039/C6RA27650D.
Vieira, S.A., McClements, D.J., Decker, E.A., Challenges of utilizing healthy fats in foods. Advances in Nutrition 6 (2015), 309S–317S, 10.3945/an.114.006965.
Watanabe, T., Kawai, T., Nonomura, Y., Effects of fatty acid addition to oil-in-water emulsions stabilized with sucrose fatty acid ester. Journal of Oleo Science 67:3 (2018), 307–313, 10.5650/jos.ess17097.
Willett, S.A., Akoh, C.C., Physicochemical characterization of organogels prepared from menhaden oil or structured lipid with phytosterol blend or sucrose stearate/ascorbyl palmitate blend. Food and Function 10:1 (2019), 180–190, 10.1039/c8fo01725e.
Ye, R., Hayes, D.G., Recent progress for lipase-catalysed synthesis of sugar fatty acid esters. Journal of Oil Palm Research 26:4 (2014), 355–365.
Youan, B.B.C., Hussain, A., Nguyen, N.T., Evaluation of sucrose esters as alternative surfactants in microencapsulation of proteins by the solvent evaporation method. AAPS Journal 5:2 (2003), 1–9.
Zeng, D., Cai, Y., Liu, T., Huang, L., Zeng, Y., Zhao, Q., & Zhao, M. (2021). The effect of sucrose esters S1570 on partial coalescence and whipping properties. Food Hydrocolloids, 125(September 2021), 107429. https://doi.org/10.1016/j.foodhyd.2021.107429.