Breast cancer; DNA methylation; Metastasis; Methylglyoxal; Tumor suppressor genes; Pyruvaldehyde; Humans; Pyruvaldehyde/metabolism; Cell Line, Tumor; Transcriptome; Gene Expression Regulation, Neoplastic; DNA Methylation; Triple Negative Breast Neoplasms/metabolism; Triple Negative Breast Neoplasms; Oncology; Cancer Research
Abstract :
[en] [en] BACKGROUND: Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate.
METHODS: Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts.
RESULTS: GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival.
CONCLUSION: This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.
Disciplines :
Laboratory medicine & medical technology
Author, co-author :
Dube, Gaurav; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
Bizet, Martin; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
Boumahd, Yasmine ; Université de Liège - ULiège > GIGA > GIGA Cancer
Gasmi, Imène ; Université de Liège - ULiège > GIGA > GIGA Cancer - Metastases Research Laboratory
Crake, Rebekah ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Bellier, Justine ; Université de Liège - ULiège > GIGA > GIGA Cancer - Metastases Research Laboratory
Nokin, Marie-Julie ; Université de Liège - ULiège > GIGA > GIGA Cancer - Tumours and development biology
Calonne, Emilie; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
Deplus, Rachel; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
Wissocq, Tom ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Peulen, Olivier ; Université de Liège - ULiège > GIGA > GIGA Cancer - Metastases Research Laboratory
Castronovo, Vincent; Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
Fuks, François; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium ; WELBIO (Walloon Excellence in Lifesciences & Biotechnology), Brussels, Belgium
Bellahcene, Akeila ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE] Fondation Rose et Jean Hoguet [BE] Fonds Léon Fredericq [BE] Fondation contre le Cancer [BE]
Funding text :
The authors are thankful to N. Maloujahmoum and F. Agirman (Metastasis Research Laboratory, University of Liège) for expert technical assistance. We thank Dr. K. Uchida (University of Tokyo, Japan) and Dr. D. Spiegel (Yale University, USA) for the kind gift of anti-argpyrimidine antibody and MBo probe, respectively. The authors acknowledge the scientific and technical support provided at the imaging/flow cytometry, genomic and viral vectors technology platforms of the GIGA-Research Institute (University of Liège, Belgium).A.B. is a Research Director at the National Fund for Scientific Research (FNRS), Belgium and F.F. is a ULB Professor. G.D. and T.W. are FNRS-Télévie PhD research fellows. G.D is also supported by Fondation Rose and Jean Hoguet. I.G. and R.C. are FNRS post-doctoral research fellows. A.B. lab is funded by grants from the FNRS, the University of Liège and Fondation Léon Fredericq. F.F. lab is funded by grants from the “Action de Recherche Concertée” (AUWB-2018–2023 ULB-No 7) and the Belgian Foundation Against Cancer (FCC 2016–086 FAF-F/2016/872). This work was supported by collaborative FNRS grants (PDR T.0188.18 and Télévie 7.4541.17) awarded to A.B and F.F.
Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168(4):657–69. DOI: 10.1016/j.cell.2016.12.039
Phillips SA, Thornalley PJ. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem. 1993;212(1):101–5. DOI: 10.1111/j.1432-1033.1993.tb17638.x
Thornalley PJ. The glyoxalase system in health and disease. Mol Aspects Med. 1993;14(4):287–371. DOI: 10.1016/0098-2997(93)90002-U
Nokin MJ, Durieux F, Peixoto P, Chiavarina B, Peulen O, Blomme A, et al. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. eLife. 2016;5:19375. DOI: 10.7554/eLife.19375
Nokin MJ, Durieux F, Bellier J, Peulen O, Uchida K, Spiegel DA, et al. Hormetic potential of methylglyoxal, a side-product of glycolysis, in switching tumours from growth to death. Sci Rep. 2017;7(1):11722. DOI: 10.1038/s41598-017-12119-7
Nokin MJ, Bellier J, Durieux F, Peulen O, Rademaker G, Gabriel M, et al. Methylglyoxal, a glycolysis metabolite, triggers metastasis through MEK/ERK/SMAD1 pathway activation in breast cancer. Breast cancer research: BCR. 2019;21(1):11. DOI: 10.1186/s13058-018-1095-7
Westwood ME, Thornalley PJ. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. J Protein Chem. 1995;14(5):359–72. DOI: 10.1007/BF01886793
Rabbani N, Thornalley PJ. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids. 2012;42(4):1133–42. DOI: 10.1007/s00726-010-0783-0
Ahmed N, Thornalley PJ, Dawczynski J, Franke S, Strobel J, Stein G, et al. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest Ophthalmol Vis Sci. 2003;44(12):5287–92. DOI: 10.1167/iovs.03-0573
Shipanova IN, Glomb MA, Nagaraj RH. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch Biochem Biophys. 1997;344(1):29–36. DOI: 10.1006/abbi.1997.0195
Chiavarina B, Nokin MJ, Durieux F, Bianchi E, Turtoi A, Peulen O, et al. Triple negative tumors accumulate significantly less methylglyoxal specific adducts than other human breast cancer subtypes. Oncotarget. 2014;5(14):5472–82. DOI: 10.18632/oncotarget.2121
Chiavarina B, Nokin MJ, Bellier J, Durieux F, Bletard N, Sherer F, et al. Methylglyoxal-mediated stress correlates with high metabolic activity and promotes tumor growth in colorectal cancer. Int J Mol Sc. 2017;18(1):213. DOI: 10.3390/ijms18010213
Bellier J, Nokin MJ, Caprasse M, Tiamiou A, Blomme A, Scheijen JL, et al. Methylglyoxal scavengers resensitize KRAS-mutated colorectal tumors to cetuximab. Cell reports. 2020;30(5):1400–16. DOI: 10.1016/j.celrep.2020.01.012
Ahmed N, Dobler D, Dean M, Thornalley PJ. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem. 2005;280(7):5724–32. DOI: 10.1074/jbc.M410973200
Bose T, Bhattacherjee A, Banerjee S, Chakraborti AS. Methylglyoxal-induced modifications of hemoglobin: structural and functional characteristics. Arch Biochem Biophys. 2013;529(2):99–104. DOI: 10.1016/j.abb.2012.12.001
Dobler D, Ahmed N, Song L, Eboigbodin KE, Thornalley PJ. Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes. 2006;55(7):1961–9. DOI: 10.2337/db05-1634
Sakamoto H, Mashima T, Yamamoto K, Tsuruo T. Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification. J Biol Chem. 2002;277(48):45770–5. DOI: 10.1074/jbc.M207485200
van Heijst JW, Niessen HW, Musters RJ, van Hinsbergh VW, Hoekman K, Schalkwijk CG. Argpyrimidine-modified Heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis. Cancer Lett. 2006;241(2):309–19. DOI: 10.1016/j.canlet.2005.10.042
Oya-Ito T, Naito Y, Takagi T, Handa O, Matsui H, Yamada M, et al. Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer. Biochem Biophys Acta. 2011;1812(7):769–81.
Galligan JJ, Wepy JA, Streeter MD, Kingsley PJ, Mitchener MM, Wauchope OR, et al. Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. Proc Natl Acad Sci USA. 2018;115(37):9228–33. DOI: 10.1073/pnas.1802901115
Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat Commun. 2019;10(1):1289. DOI: 10.1038/s41467-019-09192-z
Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92. DOI: 10.1016/j.cell.2007.01.029
Fleischer T, Tekpli X, Mathelier A, Wang S, Nebdal D, Dhakal HP, et al. DNA methylation at enhancers identifies distinct breast cancer lineages. Nat Commun. 2017;8(1):1379. DOI: 10.1038/s41467-017-00510-x
Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 2011;12(7):647–56. DOI: 10.1038/embor.2011.110
Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Köhler G, Wijermans P, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2’-deoxycytidine (decitabine) treatment. Blood. 2002;100(8):2957–64. DOI: 10.1182/blood.V100.8.2957
Issa JP, Kantarjian HM. Targeting DNA methylation. Clinical cancer research: an official journal of the American Association for Cancer Research. 2009;15(12):3938–46. DOI: 10.1158/1078-0432.CCR-08-2783
Roll JD, Rivenbark AG, Sandhu R, Parker JS, Jones WD, Carey LA, et al. Dysregulation of the epigenome in triple-negative breast cancers: basal-like and claudin-low breast cancers express aberrant DNA hypermethylation. Exp Mol Pathol. 2013;95(3):276–87. DOI: 10.1016/j.yexmp.2013.09.001
Sandhu R, Roll JD, Rivenbark AG, Coleman WB. Dysregulation of the epigenome in human breast cancer: contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. Am J Pathol. 2015;185(2):282–92. DOI: 10.1016/j.ajpath.2014.12.003
Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the Infinium Methylation 450K technology. Epigenomics. 2011;3(6):771–84. DOI: 10.2217/epi.11.105
McCartney DL, Walker RM, Morris SW, McIntosh AM, Porteous DJ, Evans KL. Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genomics data. 2016;9:22–4. DOI: 10.1016/j.gdata.2016.05.012
Dedeurwaerder S, Defrance M, Bizet M, Calonne E, Bontempi G, Fuks F. A comprehensive overview of Infinium HumanMethylation450 data processing. Brief Bioinform. 2014;15(6):929–41. DOI: 10.1093/bib/bbt054
Bizet M, Defrance M, Calonne E, Bontempi G, Sotiriou C, Fuks F, et al. Improving Infinium MethylationEPIC data processing: re-annotation of enhancers and long noncoding RNA genes and benchmarking of normalization methods. Epigenetics: official journal of the DNA Methylation Society. 2022;17(13):2434–54. DOI: 10.1080/15592294.2022.2135201
Wang T, Douglass EF Jr, Fitzgerald KJ, Spiegel DA. A “turn-on” fluorescent sensor for methylglyoxal. J Am Chem Soc. 2013;135(33):12429–33. DOI: 10.1021/ja406077j
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50. DOI: 10.1073/pnas.0506580102
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. DOI: 10.1093/bioinformatics/btu170
Aran D, Hellman A. DNA methylation of transcriptional enhancers and cancer predisposition. Cell. 2013;154(1):11–3. DOI: 10.1016/j.cell.2013.06.018
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. DOI: 10.1038/nature10983
Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M, Rothe F, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO. 2018;29(4):895–902. DOI: 10.1093/annonc/mdy024
Wu Q, Ni X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets. 2015;16(1):13–9. DOI: 10.2174/1389450116666150113121054
Du J, Li L, Ou Z, Kong C, Zhang Y, Dong Z, et al. FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Res Treat. 2012;131(1):65–73. DOI: 10.1007/s10549-011-1396-3
Caldeira JR, Prando EC, Quevedo FC, Neto FA, Rainho CA, Rogatto SR. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer. 2006;6:48. DOI: 10.1186/1471-2407-6-48
von Thun A, Birtwistle M, Kalna G, Grindlay J, Strachan D, Kolch W, et al. ERK2 drives tumour cell migration in three-dimensional microenvironments by suppressing expression of Rab17 and liprin-β2. J Cell Sci. 2012;125(Pt 6):1465–77.
Xiang YJ, Guo MM, Zhou CJ, Liu L, Han B, Kong LY, et al. Absence of gamma-interferon-inducible lysosomal thiol reductase (GILT) is associated with poor disease-free survival in breast cancer patients. PLoS ONE. 2014;9(10): e109449. DOI: 10.1371/journal.pone.0109449
Queisser MA, Yao D, Geisler S, Hammes HP, Lochnit G, Schleicher ED, et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes. 2010;59(3):670–8. DOI: 10.2337/db08-1565
Roll JD, Rivenbark AG, Jones WD, Coleman WB. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer. 2008;7:15. DOI: 10.1186/1476-4598-7-15
Shi R, Liu L, Wang F, He Y, Niu Y, Wang C, et al. Downregulation of cytokeratin 18 induces cellular partial EMT and stemness through increasing EpCAM expression in breast cancer. Cell Signal. 2020;76: 109810. DOI: 10.1016/j.cellsig.2020.109810
Bühler H, Schaller G. Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Mol Cancer Res. 2005;3(7):365–71. DOI: 10.1158/1541-7786.MCR-04-0117
Asleh-Aburaya K, Sheffield BS, Kos Z, Won JR, Wang XQ, Gao D, et al. Basal biomarkers nestin and INPP4b identify intrinsic subtypes accurately in breast cancers that are weakly positive for oestrogen receptor. Histopathology. 2017;70(2):185–94. DOI: 10.1111/his.13038
Seachrist DD, Sizemore ST, Johnson E, Abdul-Karim FW, Weber Bonk KL, Keri RA. Follistatin is a metastasis suppressor in a mouse model of HER2-positive breast cancer. Breast cancer research: BCR. 2017;19(1):66. DOI: 10.1186/s13058-017-0857-y
Gong Y, Ji P, Yang YS, Xie S, Yu TJ, Xiao Y, et al. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets. Cell Metab. 2021;33(1):51-64.e9. DOI: 10.1016/j.cmet.2020.10.012
McCleland ML, Adler AS, Shang Y, Hunsaker T, Truong T, Peterson D, et al. An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Can Res. 2012;72(22):5812–23. DOI: 10.1158/0008-5472.CAN-12-1098
Sun X, Wang M, Wang M, Yu X, Guo J, Sun T, et al. Metabolic reprogramming in triple-negative breast cancer. Front Oncol. 2020;10:428. DOI: 10.3389/fonc.2020.00428
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121(7):2750–67. DOI: 10.1172/JCI45014
Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE. 2016;11(6): e0157368. DOI: 10.1371/journal.pone.0157368
Dai Z, Ramesh V, Locasale JW. The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet. 2020;21(12):737–53. DOI: 10.1038/s41576-020-0270-8
Thangaraju M, Gopal E, Martin PM, Ananth S, Smith SB, Prasad PD, et al. SLC5A8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases. Can Res. 2006;66(24):11560–4. DOI: 10.1158/0008-5472.CAN-06-1950
Latham T, Mackay L, Sproul D, Karim M, Culley J, Harrison DJ, et al. Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 2012;40(11):4794–803. DOI: 10.1093/nar/gks066
Coukos JS, Lee CW, Pillai KS, Liu KJ, Moellering RE. Widespread, reversible cysteine modification by methylglyoxal regulates metabolic enzyme function. ACS Chem Biol. 2023;18(1):91–101. DOI: 10.1021/acschembio.2c00727
James SJ, Pogribny IP, Pogribna M, Miller BJ, Jernigan S, Melnyk S. Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis. J Nutr. 2003;133(11 Suppl 1):3740S-S3747. DOI: 10.1093/jn/133.11.3740S
Wild L, Flanagan JM. Genome-wide hypomethylation in cancer may be a passive consequence of transformation. Biochem Biophys Acta. 2010;1806(1):50–7.
Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353–7. DOI: 10.1038/nature04296
Huang E, Ishida S, Pittman J, Dressman H, Bild A, Kloos M, et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet. 2003;34(2):226–30. DOI: 10.1038/ng1167
Li M, Qi Y, Chen M, Wang Z, Zeng D, Xiao Y, et al. GATA Binding Protein 3 Boosts Extracellular ATP Hydrolysis and inhibits metastasis of breast cancer by up-regulating ectonucleoside triphosphate diphosphohydrolase 3. Int J Biol Sci. 2019;15(12):2522–37. DOI: 10.7150/ijbs.35563
Burandt E, Bari Noubar T, Lebeau A, Minner S, Burdelski C, Jänicke F, et al. Loss of ALCAM expression is linked to adverse phenotype and poor prognosis in breast cancer: a TMA-based immunohistochemical study on 2,197 breast cancer patients. Oncol Rep. 2014;32(6):2628–34. DOI: 10.3892/or.2014.3523
Bellahcene A, Nokin MJ, Castronovo V, Schalkwijk C. Methylglyoxal-derived stress: an emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol. 2018;49:64–74. DOI: 10.1016/j.semcancer.2017.05.010
Moraru A, Wiederstein J, Pfaff D, Fleming T, Miller AK, Nawroth P, et al. Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of type 2 diabetes. Cell metabolism. 2018;27(4):926–34. DOI: 10.1016/j.cmet.2018.02.003
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020;100(1):407–61. DOI: 10.1152/physrev.00001.2019
Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–44. DOI: 10.1016/j.cmet.2019.03.009
Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1(2):157–62. DOI: 10.1038/35101031
Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. DOI: 10.1038/nrg2540
Hurtubise A, Momparler RL. Effect of histone deacetylase inhibitor LAQ824 on antineoplastic action of 5-Aza-2’-deoxycytidine (decitabine) on human breast carcinoma cells. Cancer Chemother Pharmacol. 2006;58(5):618–25. DOI: 10.1007/s00280-006-0225-6