Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility.
[en] [en] BACKGROUND: Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined.
METHODS: To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization.
RESULTS: TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females.
CONCLUSIONS: Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis.
SIGNIFICANCE STATEMENT: Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Velasco, Inmaculada ✱; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain
Franssen, Delphine ✱; Université de Liège - ULiège > Département des sciences cliniques > Pédiatrie
Daza-Dueñas, Silvia; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain
Skrapits, Katalin; Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
Takács, Szabolcs; Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
Torres, Encarnación; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain
Rodríguez-Vazquez, Elvira; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain
Ruiz-Cruz, Miguel; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain
León, Silvia; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain
Kukoricza, Krisztina; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
Zhang, Fu-Ping; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
Ruohonen, Suvi; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
Luque-Cordoba, Diego; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Analytical Chemistry, University of Córdoba, Spain, CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
Priego-Capote, Feliciano; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Analytical Chemistry, University of Córdoba, Spain, CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
Gaytan, Francisco; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
Ruiz-Pino, Francisco; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
Hrabovszky, Erik; Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
Poutanen, Matti; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
Vázquez, María J; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
Tena-Sempere, Manuel; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain, Hospital Universitario Reina Sofía, Cordoba, Spain, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain. Electronic address: fi1tesem@uco.es
✱ These authors have contributed equally to this work.
Language :
English
Title :
Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility.
This work was supported by grants BFU2017-83934-P and PID2020-118660GB-I00 (Agencia Estatal de Investigación, Spain; co-funded with EU funds from FEDER Program); grant NNF18OC0034370 (Novo Nordisk Foundation); FiDiPro (Finnish Distinguished Professor) Program of the Academy of Finland (to M.P. and M.T.-S.); project PIE14-00005 (Flexi-Met, Instituto de Salud Carlos III, Ministerio de Sanidad, Spain); Projects P12-FQM-01943 and P18-RT-4093 (Junta de Andalucía, Spain), Project 1254821 (University of Cordoba-FEDER); National Science Foundation of Hungary (K128317, K138137, PD134837; to E.H.); and EU research contract GAP-2014-655232. CIBER is an initiative of Instituto de Salud Carlos III (Ministerio de Sanidad, Spain).This work was supported by grants BFU2017-83934-P and PID2020-118660GB-I00 ( Agencia Estatal de Investigación , Spain; co-funded with EU funds from FEDER Program); grant NNF18OC0034370 ( Novo Nordisk Foundation ); FiDiPro (Finnish Distinguished Professor) Program of the Academy of Finland (to M.P. and M.T.-S.); project PIE14-00005 (Flexi-Met, Instituto de Salud Carlos III , Ministerio de Sanidad , Spain); Projects P12-FQM-01943 and P18-RT-4093 ( Junta de Andalucía , Spain), Project 1254821 ( University of Cordoba - FEDER ); National Science Foundation of Hungary ( K128317 , K138137 , PD134837 ; to E.H.); and EU research contract GAP-2014-655232 . CIBER is an initiative of Instituto de Salud Carlos III (Ministerio de Sanidad, Spain).
Herbison, A.E., Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol 12 (2016), 452–466.
Maeda, K., Ohkura, S., Uenoyama, Y., Wakabayashi, Y., Oka, Y., Tsukamura, H., et al. Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res 1364 (2010), 103–115.
Pinilla, L., Aguilar, E., Dieguez, C., Millar, R.P., Tena-Sempere, M., Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 92 (2012), 1235–1316.
Franssen, D., Tena-Sempere, M., The kisspeptin receptor: a key G-protein-coupled receptor in the control of the reproductive axis. Best Pract Res Clin Endocrinol Metab 32 (2018), 107–123.
Garcia-Galiano, D., Pinilla, L., Tena-Sempere, M., Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions. J Neuroendocrinol 24 (2012), 22–33.
Pineda, R., Plaisier, F., Millar, R.P., Ludwig, M., Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis. Neuroendocrinology 104 (2017), 223–238.
Kim, J., Semaan, S.J., Clifton, D.K., Steiner, R.A., Dhamija, S., Kauffman, A.S., Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 152 (2011), 2020–2030.
Mills, E.G.A., O'Byrne, K.T., Comninos, A.N., The roles of the amygdala kisspeptin system. Semin Reprod Med 37 (2019), 64–70.
Comninos, A.N., Anastasovska, J., Sahuri-Arisoylu, M., Li, X., Li, S., Hu, M., et al. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct 221 (2016), 2035–2047.
Aggarwal, S., Tang, C., Sing, K., Kim, H.W., Millar, R.P., Tello, J.A., Medial amygdala Kiss1 neurons mediate female pheromone stimulation of luteinizing hormone in male mice. Neuroendocrinology 108 (2019), 172–189.
Yeo, S.H., Kyle, V., Morris, P.G., Jackman, S., Sinnett-Smith, L.C., Schacker, M., et al. Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse. J Neuroendocrinol, 28, 2016, 10.1111/jne.12435.
Yeo, S.H., Herbison, A.E., Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology 152 (2011), 2387–2399.
Hudson, A.D., Kauffman, A.S., Metabolic actions of kisspeptin signaling: effects on body weight, energy expenditure, and feeding. Pharmacol Ther, 231, 2022, 107974.
Mills, E.G., Yang, L., Nielsen, M.F., Kassem, M., Dhillo, W.S., Comninos, A.N., The relationship between bone and reproductive hormones beyond estrogens and androgens. Endocr Rev 42 (2021), 691–719.
Guzman, S., Dragan, M., Kwon, H., de Oliveira, V., Rao, S., Bhatt, V., et al. Targeting hepatic kisspeptin receptor ameliorates nonalcoholic fatty liver disease in a mouse model. J Clin Invest, 132, 2022, e145889.
Clarkson, J., Han, S.Y., Piet, R., McLennan, T., Kane, G.M., Ng, J., et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 114 (2017), E10216–E10223.
Lehman, M.N., Coolen, L.M., Goodman, R.L., Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151 (2010), 3479–3489.
Liu, X., Yeo, S.H., McQuillan, H.J., Herde, M.K., Hessler, S., Cheong, I., et al. Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron. Elife, 10, 2021, e62455.
Han, S.Y., Morris, P.G., Kim, J.C., Guru, S., Pardo-Navarro, M., Yeo, S.H., et al. Mechanism of kisspeptin neuron synchronization for pulsatile hormone secretion in male mice. Cell Rep, 42, 2023, 111914.
Nagae, M., Uenoyama, Y., Okamoto, S., Tsuchida, H., Ikegami, K., Goto, T., et al. Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator. Proc Natl Acad Sci U S A, 118, 2021, e2009156118.
Overgaard, A., Ruiz-Pino, F., Castellano, J.M., Tena-Sempere, M., Mikkelsen, J.D., Disparate changes in kisspeptin and neurokinin B expression in the arcuate nucleus after sex steroid manipulation reveal differential regulation of the two KNDy peptides in rats. Endocrinology 155 (2014), 3945–3955.
Hrabovszky, E., Sipos, M.T., Molnar, C.S., Ciofi, P., Borsay, B.A., Gergely, P., et al. Low degree of overlap between kisspeptin, neurokinin B, and dynorphin immunoreactivities in the infundibular nucleus of young male human subjects challenges the KNDy neuron concept. Endocrinology 153 (2012), 4978–4989.
Sanz, E., Quintana, A., Deem, J.D., Steiner, R.A., Palmiter, R.D., McKnight, G.S., Fertility-regulating Kiss1 neurons arise from hypothalamic POMC-expressing progenitors. J Neurosci 35 (2015), 5549–5556.
Franceschini, I., Lomet, D., Cateau, M., Delsol, G., Tillet, Y., Caraty, A., Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett 401 (2006), 225–230.
Ciofi, P., Krause, J.E., Prins, G.S., Mazzuca, M., Presence of nuclear androgen receptor-like immunoreactivity in neurokinin B-containing neurons of the hypothalamic arcuate nucleus of the adult male rat. Neurosci Lett 182 (1994), 193–196.
Hopman, A.H., Ramaekers, F.C., Speel, E.J., Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for in situ hybridization using CARD amplification. J Histochem Cytochem 46 (1998), 771–777.
Manfredi-Lozano, M., Roa, J., Ruiz-Pino, F., Piet, R., Garcia-Galiano, D., Pineda, R., et al. Defining a novel leptin-melanocortin-kisspeptin pathway involved in the metabolic control of puberty. Mol Metab 5 (2016), 844–857.
Luque-Cordoba, D., Priego-Capote, F., Fully automated method for quantitative determination of steroids in serum: an approach to evaluate steroidogenesis. Talanta, 224, 2021, 121923.
Steyn, F.J., Wan, Y., Clarkson, J., Veldhuis, J.D., Herbison, A.E., Chen, C., Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 154 (2013), 4939–4945.
Franssen, D., Barroso, A., Ruiz-Pino, F., Vazquez, M.J., Garcia-Galiano, D., Castellano, J.M., et al. AMP-activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism, 115, 2021, 154460.
Torres, E., Velasco, I., Franssen, D., Heras, V., Gaytan, F., Leon, S., et al. Congenital ablation of Tacr2 reveals overlapping and redundant roles of NK2R signaling in the control of reproductive axis. Am J Physiol Endocrinol Metab 320 (2021), E496–E511.
McQuillan, H.J., Han, S.Y., Cheong, I., Herbison, A.E., GnRH pulse generator activity across the estrous cycle of female mice. Endocrinology 160 (2019), 1480–1491.
Leon, S., Fergani, C., Talbi, R., Maguire, C.A., Gerutshang, A., Seminara, S.B., et al. Tachykinin signaling is required for induction of the preovulatory luteinizing hormone surge and Normal luteinizing hormone pulses. Neuroendocrinology 111 (2021), 542–554.
Czieselsky, K., Prescott, M., Porteous, R., Campos, P., Clarkson, J., Steyn, F.J., et al. Pulse and surge profiles of luteinizing hormone secretion in the mouse. Endocrinology 157 (2016), 4794–4802.
Gaytan, F., Morales, C., Leon, S., Heras, V., Barroso, A., Avendano, M.S., et al. Development and validation of a method for precise dating of female puberty in laboratory rodents: the puberty ovarian maturation score (Pub-Score). Sci Rep, 7, 2017, 46381.
Endo, T., Freinkman, E., de Rooij, D.G., Page, D.C., Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proc Natl Acad Sci U S A 114 (2017), E10132–E10141.
Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno, J.S. Jr., Shagoury, J.K., et al. The GPR54 gene as a regulator of puberty. N Engl J Med 349 (2003), 1614–1627.
Topaloglu, A.K., Reimann, F., Guclu, M., Yalin, A.S., Kotan, L.D., Porter, K.M., et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 41 (2009), 354–358.
Topaloglu, A.K., Tello, J.A., Kotan, L.D., Ozbek, M.N., Yilmaz, M.B., Erdogan, S., et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366 (2012), 629–635.
Miguel-Aliaga, I., Let's talk about (biological) sex. Nat Rev Mol Cell Biol 23 (2022), 227–228.
d'Anglemont de Tassigny, X., Fagg, L.A., Dixon, J.P., Day, K., Leitch, H.G., Hendrick, A.G., et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A 104 (2007), 10714–10719.
Garcia-Galiano, D., van Ingen, Schenau D., Leon, S., Krajnc-Franken, M.A., Manfredi-Lozano, M., Romero-Ruiz, A., et al. Kisspeptin signaling is indispensable for neurokinin B, but not glutamate, stimulation of gonadotropin secretion in mice. Endocrinology 153 (2012), 316–328.
Popa, S.M., Moriyama, R.M., Caligioni, C.S., Yang, J.J., Cho, C.M., Concepcion, T.L., et al. Redundancy in Kiss1 expression safeguards reproduction in the mouse. Endocrinology 154 (2013), 2784–2794.
Mayer, C., Boehm, U., Female reproductive maturation in the absence of kisspeptin/GPR54 signaling. Nat Neurosci 14 (2011), 704–710.
Stamatiades, G.A., Kaiser, U.B., Gonadotropin regulation by pulsatile GnRH: signaling and gene expression. Mol Cell Endocrinol 463 (2018), 131–141.
Tsukamura, H., Kobayashi Award 2019: the neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol, 315, 2022, 113755.
Sobrino, V., Avendano, M.S., Perdices-Lopez, C., Jimenez-Puyer, M., Tena-Sempere, M., Kisspeptins and the neuroendocrine control of reproduction: recent progress and new frontiers in kisspeptin research. Front Neuroendocrinol, 65, 2022, 100977.
Wang, L., Moenter, S.M., Differential roles of hypothalamic AVPV and arcuate kisspeptin neurons in estradiol feedback regulation of female reproduction. Neuroendocrinology 110 (2020), 172–184.
Mittelman-Smith, M.A., Krajewski-Hall, S.J., McMullen, N.T., Rance, N.E., Ablation of KNDy neurons results in hypogonadotropic hypogonadism and amplifies the steroid-induced LH surge in female rats. Endocrinology 157 (2016), 2015–2027.
Stephens, S.B.Z., Kauffman, A.S., Estrogen regulation of the molecular phenotype and active translatome of AVPV kisspeptin neurons. Endocrinology, 162, 2021, bqab080.
Colledge, W.H., Doran, J., Mei, H., Model systems for studying kisspeptin signalling: mice and cells. Adv Exp Med Biol 784 (2013), 481–503.
Kirilov, M., Clarkson, J., Liu, X., Roa, J., Campos, P., Porteous, R., et al. Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron. Nat Commun, 4, 2013, 2492.
Donato, J. Jr., Cravo, R.M., Frazao, R., Gautron, L., Scott, M.M., Lachey, J., et al. Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest 121 (2011), 355–368.
Mayer, C., Acosta-Martinez, M., Dubois, S.L., Wolfe, A., Radovick, S., Boehm, U., et al. Timing and completion of puberty in female mice depend on estrogen receptor alpha-signaling in kisspeptin neurons. Proc Natl Acad Sci U S A 107 (2010), 22693–22698.
Nandankar, N., Negron, A.L., Wolfe, A., Levine, J.E., Radovick, S., Deficiency of arcuate nucleus kisspeptin results in postpubertal central hypogonadism. Am J Physiol Endocrinol Metab 321 (2021), E264–E280.
Padilla, S.L., Perez, J.G., Ben-Hamo, M., Johnson, C.W., Sanchez, R.E.A., Bussi, I.L., et al. Kisspeptin neurons in the arcuate nucleus of the hypothalamus orchestrate circadian rhythms and metabolism. Curr Biol, 29(592–604), 2019, e4.
Zhou, S., Zang, S., Hu, Y., Shen, Y., Li, H., Chen, W., et al. Transcriptome-scale spatial gene expression in rat arcuate nucleus during puberty. Cell Biosci, 12, 2022, 8.
Mittelman-Smith, M.A., Williams, H., Krajewski-Hall, S.J., McMullen, N.T., Rance, N.E., Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature. Proc Natl Acad Sci U S A 109 (2012), 19846–19851.
Nestor, C.C., Qiu, J., Padilla, S.L., Zhang, C., Bosch, M.A., Fan, W., et al. Optogenetic stimulation of arcuate nucleus Kiss1 neurons reveals a steroid-dependent glutamatergic input to POMC and AgRP neurons in male mice. Mol Endocrinol 30 (2016), 630–644.
Velasco, I., Leon, S., Barroso, A., Ruiz-Pino, F., Heras, V., Torres, E., et al. Gonadal hormone-dependent vs. -independent effects of kisspeptin signaling in the control of body weight and metabolic homeostasis. Metabolism 98 (2019), 84–94.
Mittelman-Smith, M.A., Williams, H., Krajewski-Hall, S.J., Lai, J., Ciofi, P., McMullen, N.T., et al. Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology 153 (2012), 2800–2812.
Padilla, S.L., Johnson, C.W., Barker, F.D., Patterson, M.A., Palmiter, R.D., A neural circuit underlying the generation of hot flushes. Cell Rep 24 (2018), 271–277.
Qiu, J., Rivera, H.M., Bosch, M.A., Padilla, S.L., Stincic, T.L., Palmiter, R.D., et al. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. Elife, 7, 2018, e35656.
Tolson, K.P., Garcia, C., Yen, S., Simonds, S., Stefanidis, A., Lawrence, A., et al. Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. J Clin Invest 124 (2014), 3075–3079.
Mills, E.G., Yang, L., Abbara, A., Dhillo, W.S., Comninos, A.N., Current perspectives on kisspeptins role in behaviour. Front Endocrinol, 13, 2022, 928143 Lausanne.
Abbara, A., Clarke, S.A., Dhillo, W.S., Clinical potential of kisspeptin in reproductive health. Trends Mol Med 27 (2021), 807–823.
Tsoutsouki, J., Abbara, A., Dhillo, W., Novel therapeutic avenues for kisspeptin. Curr Opin Pharmacol, 67, 2022, 102319.
Mills, E.G., Dhillo, W.S., Invited review: translating kisspeptin and neurokinin B biology into new therapies for reproductive health. J Neuroendocrinol, 34, 2022, e13201.