Correlation of alkaline phosphatase activity to normal T-cell differentiation and to radiation leukemia virus-induced preleukemic cells in the C57BL mouse thymus.
Goffinet, Gerard; Defresne, Marie-Paule; Boniver, Jacques
1983 • In Cancer Research, 43 (11), p. 5416 - 5426
[en] Cytochemical methods at the light and electron microscopic level were used to define the pattern of alkaline phosphatase (APase) activity in normal thymus and to study its modifications after inoculation with the thymotropic leukemogenic radiation leukemia virus in correlation with the emergence of preleukemic cells and their thymus dependency. APase was found in numerous lymphoblasts of the fetal thymus. The enzyme was also detected in a few lymphoid blast cells of the normal young adult thymus, which were closely associated with thymic nurse cells. The observed distribution of APase in normal thymus suggests that its expression could be limited to an early stage of the T-cell differentiation pathway. After inoculation with radiation leukemia virus, APase activity remained normal for almost the entire latency period, during which virus replication spread to the cortex and thymus-dependent preleukemic cells appeared. An important increase in the number of APase-positive cells occurred later, i.e., at the end of the latency period, in nontumoral thymus, which displayed lymphocytic depletion and contained autonomous thymus-independent preleukemic cells. These latter features obviously reflected the malignant transformation of thymus lymphoblasts, which eventually led to the development of the thymic lymphomas. The results raise the question of the possible filiation between the thymic nurse cell-associated APase-positive lymphoid cells of the normal thymus and the target cells susceptible to productive infection and to neoplastic transformation after radiation leukemia virus infection.
Goffinet, Gerard; Laboratory of Pathological Anatomy, Institute of Pathology 8.23, University of Liége, 4000 Liége, Belgium
Defresne, Marie-Paule ; Université de Liège - ULiège > Département des sciences précliniques MI > Anatomie et cytologie pathologiques
Boniver, Jacques ; Université de Liège - ULiège > > Anatomie et cytologie pathologiques
Language :
English
Title :
Correlation of alkaline phosphatase activity to normal T-cell differentiation and to radiation leukemia virus-induced preleukemic cells in the C57BL mouse thymus.
Publication date :
November 1983
Journal title :
Cancer Research
ISSN :
0008-5472
eISSN :
1538-7445
Publisher :
American Association for Cancer Research, Us md
Volume :
43
Issue :
11
Pages :
5416 - 5426
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRSM - Fonds de la Recherche Scientifique Médicale CAC - Centre anticancéreux près l'Université de Liège asbl
Boniver, J., Decleve, A., Honsik, C., Lieberman, M., and Kaplan, H. S. Phenotypic characterization of thymus target cells susceptible to productive infection by the radiation leukemia virus. J. Natl. Cancer Inst., 67:1139-1151,1981.
Boniver, J., Decleve, A., Lieberman, M., Honsik, C., Travis, M., and Kaplan, H. S. Marrow-thymus interaction during radiation leukemogenesis in C57BL/Ka mice. Cancer Res., 41:390-392,1981.
Boniver, J., Lenaerts, P., and Houben-Defresne, M. P. Detection cytochimique et analyse cytofluorimétrique des phosphatases alcalines dans des lignées continues de tymphomes thymiques induits chez la souris per le virus des ratioleucoses. C. R. Soc. Bid., 176:568-574,1982.
Borgers, M., and Thone, F. The inhibition of alkaline phosphatase by 1-p-bromotetramisole. Histochemistry, 44:277-280,1975.
Brugge, J. S., and Erikson, R. L. Identification of a transformation specific antigen induced by an avian sarcoma virus. Nature (Lond.), 269: 346–348, 1977.
Culvenor. J. G., Harris. A. W., Mandel, T. E., Whitelaw, A., and Ferber, E. Alkaline phosphatase in hemotopoietic tumor cell lines of the mouse: High activity in cells of the B lymphoid lineage. J. Immunol., 126:1974-1977,1982.
Decleve, A., Lieberman, M., Ihle, J. N., and Kaplan, H. S. Biological and serological characterization of radiation leukemia virus. Proc. Natl. Acad. Sci. U. S. A. 73: 4675-4679,1976.
Decleve, A., Lieberman, M., Ihle, J. N., Rosenthal, P. N., Lung, M. L., and Kaplan, H. S. Physicochemical, biological and serological properties of a leukemogenic virus isolated from cultured RadLV-induced lymphomas of C57BL/Ka mice. Virology, 90:23-35,1978.
Decleve, A., Sato, C., Lieberman, M., and Kaplan, H. S. Selective thymic localization of murine leukemia virus related antigen in C57BL/Ka mice after inoculation with radiation leukemia virus. Proc. Natl. Acad. Sci. U. S. A., 71: 3124-3128,1974.
Decleve, A., Travis, M., Weissman, I. L., Lieberman, M., and Kaplan, H. S. Focal infection and transformation in situ of thymus cell subclasses by a thymotropic murine leukemia virus. Cancer Res., 35:3585-3595,1975.
Dolbeere, F., Vanderlaan, H., and Phares, W. Alkaline phosphatase and an acid acrylamidase as marker enzymes for normal transformed WI-38 cells. J. Histochem. Cytochem., 28:419-426,1980.
Doty, S. B. Problems inherent in obtaining the alkaline phosphatase reaction. J. Histochem. Cytochem., 28:66-68,1980.
Finn, O. J., Boniver, J., and Kaplan, H. S. Induction, establishment in vitro and characterization of functional antigen specific, carrier-primed murine T-cell lymphomas. Proc. Natl. Acad. Sci. U. S. A., 76:4033-4037,1979.
Garcia-Rozas, C., Plaza, A., Diaz-Espada, F., Kreisler, M., and Martinez-Alonso, C. Alkaline phosphatase activity as a membrane marker for activated B cells. J. Immunol. 129:52-55,1982.
Goldschneider, I., Metcalf, D., Mandel, T., and Bollum, F. J. Analysis of rat hemopoietic cells on the fluorescence-activated cell sorter. II. Isolation of terminal deoxynucleotidyt transferase-positive cells. J. Exp. Med., 152: 438-445.1980.
Gregoire, K. E., Goldschneider, I., Barton, R. M., and Bollum, F. Ontogeny of terminal deoxynudeotidyl transferase positive cells in tymphohemopoietic tissues of rat and mouse. J. Immunol., 123:1347-1352,1974.
Haran-Ghera, N. Relationship between tumor cell and host in chemical leukemogenesis. Nat. New Biol., 246:84-86,1973.
Haran-Ghera, N. Spontaneous and induced preleukemia cells in C57BL/6 mice: Brief communication. J. Natl. Cancer Inst., 60:707-710,1978.
Haran-Ghera, N. Potential leukemic cells among bone marrow cells of young AKR/J mice. Proc. Natl. Acad. Sci. U. S. A., 77:2923-2926,1980.
Haran-Ghera, N., Rubio, N., Leef, F., and Goldstein, G. Characteristics of preleukemia cells induced in mice. Cell. Immunol., 37:308-314,1978.
Hays, E. F. Bone marrow progenitor cells of AKR mice give rise to thymic lymphoma cells. Leukemia Res., 6:429-432,1982.
Herzenberg, L. A., and Herzenberg, L A. Analysis and separation using the fluorescence activated cell sorter (FACS). In: D. M. Weir (ed.), Handbook of Experimental Immunology, Ed. 3, Vol. 2, pp. 22.1-22.21. Oxford, England: Blackwell Scientific Publication, 1978.
Houben-Defresne, M. P., and Boniver, J. Thymic nurse cells account for the thymus dependency of preleukemic cells in mice after inoculation of radiation leukemia virus. Leukemia Res., in press, 1983.
Houben-Defresne, M. P., Variet, A., Goffinet, G., and Boniver, J. Thymic nurse cells are the first site of virus replication after inoculation of the radiation leukemia virus. Leukemia Res., 6:231-241,1982.
Houben-Defresne, M. P., Variet, A., Goffinet, G., Thiry, A., and Boniver, J. Thymic nurse cells: A site for the interactions between radiation leukemia virus and thymus immature lymphoid cells. In: S. J. Baum, G. D. Ledney, and S. Thierfelder(Eds.), Experimental Hematology Today 1982, pp. 179–186. Basel: S. Karger AG, 1982.
Kadish, J. L., and Basch, R. S. Hematopoietic thymocyte precursor. II. A population of thymocytes with the capacity to return (“home”) to the thymus. Cell. Immunol., 30:12-14,1977.
Kaplan, H.S. The role of cell differentiation as determinant of susceptibility to virus carcinogenesis. Cancer Res., 21:981-983,1961.
Kyewski, B., Hunsman, G., Friedrich, R., Ketelsen, U. P., and Wekerie, H. Thymic nurse cells: Intraepithelial thymocyte sojourn and its possible relevance for the pathogenesis of AKR lymphomas. In: R. Neth, R. Gallo, T. Graf, K. Mannweller, and K. Winkler (Eds). Modem Trends in Human Leukemia IV, Vol. 26. pp. 372–376. Berlin: Springer Verlag, 1981.
Kyewski, B. A., and Kaplan, H. S. Lymphoepithellal interactions in the mouse thymus: Phenotypic and kinetic studies on thymic nurse cells. J. Immunol., 128:2287-2294,1982.
Kyewski, B., Rouse, R. V., and Kaplan, H. S. Thymocyte rosettes: Multicelular complexes of lymphocytes and bone marrow derived stromal cells in the mouse thymus. Proc. Natl. Acad. Sci. U. S. A., 79:5646-5650,1982.
Lageriof.B. A., and Kaplan, H.S. Specificity of the relationship between thymic alkaline phosphatase activity and lymphoma development in strain C57BL mice. J. Natl. Cancer. Inst., 38:437-458,1967.
Lieberman, M., Decleave, A., and Kaplan, H. S. Rapid in vitro assay for thymotropic, leukemogenic murine C-type viruses. Virology, 90: 274–278, 1978.
Lieberman, M., Decleve, A., Ricclardi-Castagnoli, P., Boniver, J., Finn, O. J., and Kaplan, H. S. Establishment, characterization and virus expression of cell lines derived from radiation and from virus-induced lymphomas of C57BL/Ka mice. Int. J. Cancer, 24:168-177,1979.
Lieberman, M., and Kaplan, H.S. Leukemogenic activity from radiation induced lymphoid tumors of mice. Science Wash. D. C., 130:387-388,1959.
Loken, M. R., Stout, R. D., and Herzenberg, L.A. Lymphoid cell analysis and sorting. In: M. R. Melaned, P. F. Mullaney, and M. L. Mendelsohn (eds.), Flow cytometry and sorting, pp 505–530. New York Wiley & Sons, Inc., 1979.
Mathieson, B. J., Sharrow, S. O., Rosenberg, Y., and Hammerling, U. Lyt1+23- cells appear in the thymus before Lyt-123+ cells. Nature (Lond.), 289: 179–181 1981
Molnar, I. The use of rhodizonate in enzymatic histochemistry. Stain Technol., 2: 5-22,1952.
Reale, E., and Luciano. L. Effect of fixation on the alkaline phosphatase activity of mouse proximal convoluted tubule. J. Histochem. Cytochem., 15: 413, 1967
Reale, E., and Luciano, L. Kritische elektronenmikroskopische Studien über die Lokalisation der Aktivitat alkalischer Phosphatase in Hauptstück der Niere von Maüsen. Histochemie, 8:302-314,1967.
Ritter, M. A., Sauvage, C. A., and Cotmore, F. The human thymus microenvironment: In vivo identification of thymic nurse cells and other antigenically distinct subpopulations of epithelial cells. Immunology, 44:438-446,1981.
Siegler, R., and Rich, M. A. Significance of increased alkaline phosphatase activity in viral induced thymic lymphoma. Proc. Soc. Exp. Biol. Med., 125:868-871,1967.
Silverstone, A., Cantor. H., Goldstein, G., and Baltimore, D. Terminal deoxynucleotidyl transferase is found in prothymocytes. J. Exp. Med., 144, 543–548, 1976.
Smith, C. Studies on the thymus of the mammal. XII. Histochemistry of the thymuses of C57BL/6 and AKR strain of mice. J. Natl. Cancer Inst., 26: 389-403,1961.
Smith, C. Studies on the thymus of the mammal. XIII. Histochemistry of irradiated thymuses of C57BL strain mice. J. Natl. Cancer Inst., 29:375-388,1962
Vakharia, D. D. Demonstration of keratin filaments in thymic nurse cells (TNC) and alloreactivity of TNC-T cell population. Thymus, 5: 43-52, 1983.
Weissman, I. L. Thymus cell migration. J. Exp. Med., 126:291-304, 1967.
Wekerle, H., and Keteisen, U. P. Thymic nurse cells-la bearing epithelium involved in T-lymphocyte differentiation? Nature (Lond.), 283:402-404, 1980.
Wekerle, H., Keteisen, U. P., and Emst, M. Thymic nurse cells. Lymphoepithelial cell complexes in murine thymuses: Morphological and serological characterization. J. Exp. Med., 151:925-944, 1980.