[en] [en] BACKGROUND AND AIMS: Treatment with tumor necrosis factor α (TNFα) antagonists in IBD patients suffers from primary non-response rates of up to 40%. Biomarkers for early prediction of therapy success are missing. We investigated the dynamics of gene expression and DNA methylation in blood samples of IBD patients treated with the TNF antagonist infliximab and analyzed the predictive potential regarding therapy outcome.
METHODS: We performed a longitudinal, blood-based multi-omics study in two prospective IBD patient cohorts receiving first-time infliximab therapy (discovery: 14 patients, replication: 23 patients). Samples were collected at up to 7 time points (from baseline to 14 weeks after therapy induction). RNA-sequencing and genome-wide DNA methylation data were analyzed and correlated with clinical remission at week 14 as a primary endpoint.
RESULTS: We found no consistent ex ante predictive signature across the two cohorts. Longitudinally upregulated transcripts in the non-remitter group comprised TH2- and eosinophil-related genes including ALOX15, FCER1A, and OLIG2. Network construction identified transcript modules that were coherently expressed at baseline and in non-remitting patients but were disrupted at early time points in remitting patients. These modules reflected processes such as interferon signaling, erythropoiesis, and platelet aggregation. DNA methylation analysis identified remission-specific temporal changes, which partially overlapped with transcriptomic signals. Machine learning approaches identified features from differentially expressed genes cis-linked to DNA methylation changes at week 2 as a robust predictor of therapy outcome at week 14, which was validated in a publicly available dataset of 20 infliximab-treated CD patients.
CONCLUSIONS: Integrative multi-omics analysis reveals early shifts of gene expression and DNA methylation as predictors for efficient response to anti-TNF treatment. Lack of such signatures might be used to identify patients with IBD unlikely to benefit from TNF antagonists at an early time point.
Disciplines :
Genetics & genetic processes
Author, co-author :
Mishra, Neha; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
Aden, Konrad; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany ; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
Blase, Johanna I; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
Baran, Nathan; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
Bordoni, Dora; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
Tran, Florian; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany ; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
Conrad, Claudio; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
Avalos, Diana; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
Jaeckel, Charlot; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
Scherer, Michael; Department of Genetics, University of Saarland, Saarbrücken, Germany ; Present address: Department of Bioinformatics and Genomics, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
Sørensen, Signe B; The Molecular Diagnostics and Clinical Research Unit, University Hospital of Southern Denmark, Aabenraa, Denmark ; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
Overgaard, Silja H; The Molecular Diagnostics and Clinical Research Unit, University Hospital of Southern Denmark, Aabenraa, Denmark ; Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark ; Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
Schulte, Berenice; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
Nikolaus, Susanna; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
Rey, Guillaume; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
Gasparoni, Gilles; Department of Genetics, University of Saarland, Saarbrücken, Germany
Lyons, Paul A; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB 0AW, UK ; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
Schultze, Joachim L; Life &, Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany ; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE), and University of Bonn, Bonn, Germany
Walter, Jörn; Department of Genetics, University of Saarland, Saarbrücken, Germany
Andersen, Vibeke; The Molecular Diagnostics and Clinical Research Unit, University Hospital of Southern Denmark, Aabenraa, Denmark ; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark ; Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
SYSCID Consortium
Dermitzakis, Emmanouil T; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
Schreiber, Stefan; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany. s.schreiber@mucosa.de ; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany. s.schreiber@mucosa.de
Rosenstiel, Philip ; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany. p.rosenstiel@mucosa.de ; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany. p.rosenstiel@mucosa.de
Georges, Michel ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale ; SYSCID Consotium
Language :
English
Title :
Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease.
H2020 - 733100 - SYSCID - A Systems medicine approach to chronic inflammatory disease
Funders :
EU - European Union IMI - Innovative Medicines Initiative DFG - Deutsche Forschungsgemeinschaft UKSH - Universitätsklinikum Schleswig-Holstein
Funding text :
Open Access funding enabled and organized by Projekt DEAL. This work was supported by the EU projects SYSCID (733100), IMI2 ImmUniverse (853995), the IMI2 Project 3TR (831434), the BMBF project iTREAT (01ZX1902A), and ExC 2167 Precision Medicine in Chronic Inflammation (RTF-VI).We thank K. Greve, M. Rohm, M. Hansen, S. Kock, D. Oelsner, S. Rentzow, M. Reffelmann, M. Schlapkohl, N. Braun, T. Wesse, M. Basso, Y. Dolschanskaya, X. Yi, C. Lancken, and M. Vollstedt for perfect technical assistance. We also thank the Popgen Biobank in Kiel for providing the storage and access of the biosamples and the Competence Centre for Genomic Analysis (CCGA), Kiel, for providing the infrastructure for next-generation sequencing. We are indebted to the patients, their families, and the hospital staff for support, without whom this study would not have been possible. Members of the SYSCID Consortium are as follows: Konrad Aden, Vibeke Andersen, Diana Avalos, Aggelos Banos, George Bertsias, Marc Beyer, Johanna I Blase, Dimitrios Boumpas, Emmanouil T Dermitzakis, Axel Finckh, Andre Franke, Gilles Gasparoni, Michel Georges, Wei Gu, Robert Häsler, Mohamad Jawhara, Amy Kenyon, Christina Kratsch, Roland Krause, Gordan Lauc, Paul A Lyons, Massimo Mangino, Neha Mishra, Gioacchino Natoli, Marek Ostaszewski, Silja H Overgaard, Marija Pezer, Jeroen Raes, Souad Rahmouni, Marilou Ramos-Pamplona, Benedikt Reiz, Elisa Rosati, Philip Rosenstiel, Despina Sanoudou, Venkata Satagopam, Reinhard Schneider, Jonas Schulte-Schrepping, Joachim L Schultze, Prodromos Sidiropoulos, Kenneth GC Smith, Signe B Sørensen, Timothy Spector, Doris Vandeputte, Sara Vieira-Silva, Aleksandar Vojta, Jörn Walter, Stefanie Warnat-Herresthal, and Vlatka Zoldoš.
Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359:1541–9. 10.1016/S0140-6736(02)08512-4. DOI: 10.1016/S0140-6736(02)08512-4
Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–76. 10.1056/nejmoa050516. DOI: 10.1056/nejmoa050516
Hanauer SB, Sandborn WJ, Rutgeerts P, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006;130:323–33. 10.1053/j.gastro.2005.11.030. DOI: 10.1053/j.gastro.2005.11.030
Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 2012;61:918–32. 10.1136/gutjnl-2011-300904. DOI: 10.1136/gutjnl-2011-300904
Ben-Horin S, Kopylov U, Chowers Y. Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun. Rev. 2014;13:24–30. 10.1016/j.autrev.2013.06.002. DOI: 10.1016/j.autrev.2013.06.002
Ding NS, Hart A, De Cruz P. Systematic review: predicting and optimising response to anti-TNF therapy in Crohn’s disease - algorithm for practical management. Aliment Pharmacol Ther. 2016;43:30–51. 10.1111/apt.13445. DOI: 10.1111/apt.13445
Derer S, Till A, Haesler R, et al. MTNF reverse signalling induced by TNFa antagonists involves a GDF-1 dependent pathway: implications for Crohn’s disease. Gut. 2013;62:376–86. 10.1136/gutjnl-2011-300384. DOI: 10.1136/gutjnl-2011-300384
Verstockt B, Verstockt S, Creyns B, et al. Mucosal IL13RA2 expression predicts nonresponse to anti-TNF therapy in Crohn’s disease. Aliment Pharmacol Ther. 2019;49:572–81. 10.1111/apt.15126. DOI: 10.1111/apt.15126
Verstockt B, Verstockt S, Dehairs J, et al. Low TREM1 expression in whole blood predicts anti-TNF response in inflammatory bowel disease. EBioMedicine. 2019;40:733–42. 10.1016/j.ebiom.2019.01.027. DOI: 10.1016/j.ebiom.2019.01.027
Schmitt H, Billmeier U, Dieterich W, et al. Expansion of IL-23 receptor bearing TNFR2+ T cells is associated with molecular resistance to anti-TNF therapy in Crohn’s disease. Gut. 2018;68:814–28. 10.1136/gutjnl-2017-315671. DOI: 10.1136/gutjnl-2017-315671
Gaujoux R, Starosvetsky E, Maimon N, et al. Cell-centred meta-analysis reveals baseline predictors of anti-TNFα non-response in biopsy and blood of patients with IBD. Gut. 2019;68:604–14. 10.1136/gutjnl-2017-315494. DOI: 10.1136/gutjnl-2017-315494
Pavlidis S, Monast C, Loza MJ, et al. I_MDS: an inflammatory bowel disease molecular activity score to classify patients with differing disease-driving pathways and therapeutic response to anti-TNF treatment. PLOS Comput Biol. 2019;15:e1006951. 10.1371/journal.pcbi.1006951. DOI: 10.1371/journal.pcbi.1006951
Arijs I, Li K, Toedter G, et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut. 2009;58:1612–9. 10.1136/gut.2009.178665. DOI: 10.1136/gut.2009.178665
Mesko B, Poliska S, Váncsa A, et al. Peripheral blood derived gene panels predict response to infliximab in rheumatoid arthritis and Crohn’s disease. Genome Med. 2013;5:59. 10.1186/gm463. DOI: 10.1186/gm463
West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease. Nat Med. 2017;23:579–89. 10.1038/nm.4307. DOI: 10.1038/nm.4307
Martin JC, Chang C, Boschetti G, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 2019:1–16. https://doi.org/10.1016/j.cell.2019.08.008.
Schreiber S, Nikolaus S, Hampe J, et al. Tumour necrosis factor α and interleukin 1β in relapse of Crohn’s disease. Lancet. 1999;353:459–61. 10.1016/S0140-6736(98)03339-X. DOI: 10.1016/S0140-6736(98)03339-X
Lee JW, Plichta D, Hogstorm L, et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbiome. 2021;29(8):1294–304. 10.1016/j.chom.2021.06.019. DOI: 10.1016/j.chom.2021.06.019
Lee JC, Lyons PA, McKinney EF, et al. Gene expression profiling of CD8 + T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest. 2011;121:4170–9. 10.1172/JCI59255. DOI: 10.1172/JCI59255
Orange DE, Yao V, Sawicka K, et al. RNA Identification of PRIME cells predicting rheumatoid arthritis flares. N Engl J Med. 2020;383:218–28. 10.1056/nejmoa2004114. DOI: 10.1056/nejmoa2004114
Bernardes JP, Mishra N, Tran F, et al. Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells and plasmablasts as hallmarks of severe COVID-19 trajectories. Immunity. 2020;53:1296–1314.e9. 10.1016/j.immuni.2020.11.017. DOI: 10.1016/j.immuni.2020.11.017
Zeissig S, Rosati E, Dowds CM, et al. Vedolizumab is associated with changes in innate rather than adaptive immunity in patients with inflammatory bowel disease. Gut. 2019;68:25–39. 10.1136/gutjnl-2018-316023. DOI: 10.1136/gutjnl-2018-316023
Mishra N, Aden K, Baran N, et al. Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease [RNA-Seq]. GSE191328, NCBI Gene Expression Omnibus. 2022. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE191328. Accesesed 27 Jul 2022.
Ewels PA, Peltzer A, Fillinger S, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;383(38):276–8. 10.1038/s41587-020-0439-x. DOI: 10.1038/s41587-020-0439-x
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2. 10.14806/ej.17.1.200. DOI: 10.14806/ej.17.1.200
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. 10.1093/bioinformatics/bts635. DOI: 10.1093/bioinformatics/bts635
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. 10.1093/bioinformatics/btt656. DOI: 10.1093/bioinformatics/btt656
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. 10.1186/s13059-014-0550-8. DOI: 10.1186/s13059-014-0550-8
Fischer DS, Theis FJ, Yosef N. Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Res. 2018;46:e119. 10.1093/nar/gky675. DOI: 10.1093/nar/gky675
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. 10.1186/1471-2105-9-559. DOI: 10.1186/1471-2105-9-559
Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci. 2006. 10.1073/pnas.0605938103.
Langfelder P, Luo R, Oldham MC, et al. Is my network module preserved and reproducible? PLoS Comput Biol. 2011;7. 10.1371/journal.pcbi.1001057.
Mishra N, Aden K, Baran N, et al. Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease [methylation]. GSE191297, NCBI Gene Expression Omnibus. 2022. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE191297. Accesesed 27 Jul 2022.
Müller F, Scherer M, Assenov Y, et al. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol. 2019;20:55. 10.1186/s13059-019-1664-9. DOI: 10.1186/s13059-019-1664-9
Alexa ARJ. topGO: enrichment analysis for gene ontology. R package version; 2016. p. 2.32.0.
Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. Bioinformatics. 2016;32:587–9. 10.1093/bioinformatics/btv612. DOI: 10.1093/bioinformatics/btv612
Wright MN, Ziegler A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17. 10.18637/jss.v077.i01. DOI: 10.18637/jss.v077.i01
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26. 10.18637/jss.v028.i05. DOI: 10.18637/jss.v028.i05
Zhou R, Man Y. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas. Mole Med Rep. 2016;13:3491–7. 10.3892/mmr.2016.4943. DOI: 10.3892/mmr.2016.4943
Pampouille E, Hennequet-Antier C, Praud C, et al. Differential expression and co-expression gene network analyses reveal molecular mechanisms and candidate biomarkers involved in breast muscle myopathies in chicken. Sci Rep. 2019;9:14905. 10.1038/s41598-019-51521-1. DOI: 10.1038/s41598-019-51521-1
Steen CB, Liu CL, Alizadeh AA, et al. Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. In: Methods in molecular biology: Humana Press Inc.; 2020. p. 135–57. 10.1007/978-1-0716-0301-7_7. DOI: 10.1007/978-1-0716-0301-7_7
Häsler R, Feng Z, Bäckdahl L, et al. A functional methylome map of ulcerative colitis. Genome Res. 2012;22:2130–7. 10.1101/gr.138347.112. DOI: 10.1101/gr.138347.112
Somineni HK, Venkateswaran S, Kilaru V, et al. Blood-derived DNA methylation signatures of Crohn’s disease and severity of intestinal inflammation. Gastroenterology. 2019;156:2254–2265.e3. 10.1053/j.gastro.2019.01.270. DOI: 10.1053/j.gastro.2019.01.270
Franke A, McGovern DPB, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25. 10.1038/ng.717. DOI: 10.1038/ng.717
Nikolaus S, Schulte B, Al-Massad N, et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology. 2017;153:1504–16. 10.1053/j.gastro.2017.08.028. DOI: 10.1053/j.gastro.2017.08.028
McKinney EF, Lyons PA, Carr EJ, et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat Med. 2010;16:586–91. 10.1038/nm.2130. DOI: 10.1038/nm.2130
Tasaki S, Suzuki K, Kassai Y, et al. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat Commun. 2018;9:1–12. 10.1038/s41467-018-05044-4. DOI: 10.1038/s41467-018-05044-4
Guttman-Yassky E, Bissonnette R, Ungar B, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143:155–72. 10.1016/j.jaci.2018.08.022. DOI: 10.1016/j.jaci.2018.08.022
Biasci D, Lee JC, Noor NM, et al. A blood-based prognostic biomarker in IBD. Gut. 2019:1–10. https://doi.org/10.1136/gutjnl-2019-318343.
Bertani L, Fornai M, Fornili M, et al. Serum oncostatin M at baseline predicts mucosal healing in Crohn’s disease patients treated with infliximab. Aliment Pharmacol Ther. 2020;52:284–91. 10.1111/apt.15870. DOI: 10.1111/apt.15870
Billioud V, Gibot S, Massin F, et al. Plasma soluble triggering receptor expressed on myeloid cells-1 in Crohn’s disease. Dig Liver Dis. 2012;44:466–70. 10.1016/j.dld.2012.01.005. DOI: 10.1016/j.dld.2012.01.005
Sridhar S, Liu H, Pham TH, et al. Modulation of blood inflammatory markers by benralizumab in patients with eosinophilic airway diseases. Respir Res. 2019;20:1–12. 10.1186/s12931-018-0968-8. DOI: 10.1186/s12931-018-0968-8
Click B, Anderson AM, Koutroubakis IE, et al. Peripheral eosinophilia in patients with inflammatory bowel disease defines an aggressive disease phenotype. Am J Gastroenterol. 2017;112(12):1849–58. 10.1038/ajg.2017.402. DOI: 10.1038/ajg.2017.402
Bhattacharya A, Lichtenstein GR, Bhagya Rao B, et al. Su1956 peripheral blood eosinophila is associated with lower infliximab persistence in IBD patients: a tertiary care center experience. Gastroenterology. 2020;158(6):S-719-S-720. 10.1016/S0016-5085(20)32482-3. DOI: 10.1016/S0016-5085(20)32482-3
Danese S, Hoffman C, Vel S, et al. Anaemia from a patient perspective in inflammatory bowel disease: results from the European Federation of Crohn’s and Ulcerative Colitis Association’s online survey. Eur J Gastroenterol Hepatol. 2014;26:1385–91. 10.1097/MEG.0000000000000200. DOI: 10.1097/MEG.0000000000000200
Koutroubakis IE, Ramos-Rivers C, Regueiro M, et al. Persistent or recurrent anemia is associated with severe and disabling inflammatory bowel disease. Clin Gastroenterol Hepatol. 2015;13:1760–6. 10.1016/j.cgh.2015.03.029. DOI: 10.1016/j.cgh.2015.03.029
Di Sabatino A, Santilli F, Guerci M, et al. Oxidative stress and thromboxane-dependent platelet activation in inflammatory bowel disease: effects of anti-TNFα treatment. Thromb Haemost. 2016;116:486–95. 10.1160/TH16-02-0167. DOI: 10.1160/TH16-02-0167
Papadaki HA, Kritikos HD, Valatas V, et al. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor-α antibody therapy. Blood. 2002;100:474–82. 10.1182/blood-2002-01-0136. DOI: 10.1182/blood-2002-01-0136
Doyle MK, Rahman MU, Han C, et al. Treatment with infliximab plus methotrexate improves anemia in patients with rheumatoid arthritis independent of improvement in other clinical outcome measures-a pooled analysis from three large, multicenter, double-blind, randomized clinical trials. Semin. Arthritis Rheum. 2009;39:123–31. 10.1016/j.semarthrit.2008.08.002. DOI: 10.1016/j.semarthrit.2008.08.002
Furst DE, Kay J, Wasko MC, et al. The effect of golimumab on haemoglobin levels in patients with rheumatoid arthritis, psoriatic arthritis or ankylosing spondylitis. Rheumatol (United Kingdom). 2013;52:1845–55. 10.1093/rheumatology/ket233. DOI: 10.1093/rheumatology/ket233
Manfredi AA, Baldini M, Camera M, et al. Anti-TNFα agents curb platelet activation in patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1511–20. 10.1136/annrheumdis-2015-208442. DOI: 10.1136/annrheumdis-2015-208442
Koutroubakis IE, Ramos-Rivers C, Regueiro M, et al. The influence of anti-tumor necrosis factor agents on hemoglobin levels of patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1587–93. 10.1097/MIB.0000000000000417. DOI: 10.1097/MIB.0000000000000417
Jürgens M, Mahachie John JM, Cleynen I, et al. Levels of C-reactive protein are associated with response to infliximab therapy in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2011;9:421–427.e1. 10.1016/j.cgh.2011.02.008. DOI: 10.1016/j.cgh.2011.02.008
Lopetuso L, Gerardi V, Papa V, et al. Can we predict the efficacy of anti-TNF-α agents? Int J Mole Sci. 2017;18:1973. 10.3390/ijms18091973. DOI: 10.3390/ijms18091973