air temperature (AT); climate change; Greenland; Mittivakkat glacier; precipitation; RACMO2; rainfall; snowfall; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Along with Arctic warming, climate models project a strong increase in Arctic precipitation in the 21st century as well as an increase in the ratio of liquid to total precipitation. In the precipitation-rich region of south-east Greenland, precipitation changes could locally have significant impacts on runoff. However, climate data are sparse in this remote region. This study focuses on improving our understanding of the past precipitation changes on Ammassalik island in south-east Greenland between 1958 and 2021. To assess past changes in air temperature at 2-meter and precipitation, output from a regional polar climate model (RACMO2.3p2) is evaluated with measurements from automatic weather stations in Tasiilaq and on Mittivakkat glacier. In addition, RACMO2.3p2 is used to assess past seasonal changes in air temperature at 2-meter, precipitation amount, precipitation phase and the altitude of the rain/snow boundary. We find that the climate model accurately represents the monthly average observed air temperature at 2-meter. While total precipitation is overestimated, interannual variability of precipitation is properly captured. We report a significant increase of summer temperature at 2-meter of +0.3°C/decade (p<0.01) at Mittivakkat glacier and +0.2°C/decade (p<0.01) in Tasiilaq in 1958–2021. For the subperiod 1990–2019, the trend in annual averages of temperature at 2-meter in Tasiilaq (+0.8°C/decade, p=0.02) corresponds well to known temperature trends on the Greenland Ice Sheet within the same period. On Mittivakkat glacier a significant trend is not detected within this subperiod (+0.2°C/decade, p=0.25). The modelled liquid precipitation ratio on Ammassalik island increased in all summer months (1958–2015) by +2.0/+1.9/+1.8%/decade in June/July/August respectively. In July and August, these trends were stronger at higher elevations. No statistical evidence is found for trends in other seasons. We also identify monthly increases in the altitude of the rain-to-snow boundary (+25/+23/+20 m/decade in July/August/September respectively).
Disciplines :
Earth sciences & physical geography
Author, co-author :
van der Schot, Jorrit; Institute of Geography and Regional Science, University of Graz, Graz, Austria
Abermann, Jakob; Institute of Geography and Regional Science, University of Graz, Graz, Austria
Silva, Tiago; Institute of Geography and Regional Science, University of Graz, Graz, Austria
Jensen, Caroline Drost; Danish Meteorological Institute, Copenhagen, Denmark
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Schöner, Wolfgang; Institute of Geography and Regional Science, University of Graz, Graz, Austria ; Austrian Polar Research Institute, Vienna, Austria
Language :
English
Title :
Precipitation trends (1958–2021) on Ammassalik island, south-east Greenland
This research has been conducted as part of the Snow2Rain research project, which has been funded by the Earth System Sciences (ESS) research programme of the ÖAW, the Austrian Academy of Sciences.
Allerup P. Madsen H. Vejen F. (1998). Estimating true precipitation in arctic areas. NHP Rep. 1–9.
Allerup P. Vejen H. Madsen F. (2000). Correction of precipitation based on off-site weather information. Atmos. Res. 53, 231–250. 10.1016/s0169-8095(99)00051-4
Berdahl M. Rennermalm A. Hammann A. Mioduszweski J. Hameed S. Tedesco M. et al. (2018). Southeast Greenland winter precipitation strongly linked to the Icelandic Low position. J. Clim. 31, 4483–4500. 10.1175/JCLI-D-17-0622.1
Bintanja R. Andry O. (2017). Towards a rain-dominated Arctic. Nat. Clim. Chang. 7, 263–267. 10.1038/nclimate3240
Bintanja R. Selten F. M. (2014). Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509, 479–482. 10.1038/nature13259
Bjørk A. A. Kjær K. H. Korsgaard N. J. Khan S. A. Kjeldsen K. K. Andresen C. S. et al. (2012). An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat. Geosci. 5, 427–432. 10.1038/ngeo1481
Box J. E. Colgan W. T. Christensen T. R. Schmidt N. M. Lund M. Parmentier F.-J. W. et al. (2019). Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010. 10.1088/1748-9326/aafc1b
Cai Z. You Q. Wu F. Chen H. W. Chen D. Cohen J. (2021). Arctic warming revealed by multiple CMIP6 models: Evaluation of historical simulations and quantification of future projection uncertainties. J. Clim. 34, 4871–4952. 10.1175/JCLI-D-20-0791.1
Cappelen J. Vinther B. M. Kern-Hansen C. Laursen E. V. Jørgensen P. V. (2021). Greenland-DMI historical climate data collection 1784-2020. Available at: https://www.dmi.dk/publikationer/.
Delhasse A. Hanna E. Kittel C. Fettweis X. (2020). Brief communication: CMIP6 does not suggest any atmospheric blocking increase in summer over Greenland by 2100. Int. J. Climatol. 41, 2589–2596. 10.1002/joc.6977
Doyle S. H. Hubbard A. Van De Wal R. S. W. Box J. E. Van As D. Scharrer K. et al. (2015). Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat. Geosci. 8, 647–653. 10.1038/ngeo2482
Fausto R. S. Abermann J. Ahlstrøm A. P. (2020). Annual surface mass balance records (2009–2019) from an automatic weather station on Mittivakkat glacier, SE Greenland. Front. Earth Sci. 8, 1–5. 10.3389/feart.2020.00251
Fausto R. Van As D. (2021). Programme for monitoring of the Greenland ice sheet (PROMICE): Automatic weather station data. Version: v03. Geol. Surv. Den. Greenl. 13, 3819–3845.
Hanna E. Cappelen J. Fettweis X. Mernild S. H. Mote T. L. Mottram R. et al. (2020). Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41, 1–17. 10.1002/joc.6771
Hanna E. Cappelen J. Fettweis X. Mernild S. H. Mote T. L. Mottram R. et al. (2021). Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41, E1336–E1352. 10.1002/joc.6771
Hanssen-bauer I. F. (2003). Climate variations and implications for precipitations types in the Norwegian arctic.
Hantemirov R. M. Corona C. Guillet S. Shiyatov S. G. Stoffel M. Osborn T. J. et al. (2022). Current Siberian heating is unprecedented during the past seven millennia. Nat. Commun. 13, 4968–8. 10.1038/s41467-022-32629-x
Howat I. M. Negrete A. Smith B. E. (2014). The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518. 10.5194/tc-8-1509-2014
Hu W. Yao J. He Q. Chen J. (2021). Elevation-dependent trends in precipitation observed over and around the Tibetan plateau from 1971 to 2017. WaterSwitzerl. 13, 2848–2917. 10.3390/w13202848
Huai B. van den Broeke M. R. Reijmer C. H. Noël B. (2022). A daily, 1 km resolution Greenland rainfall climatology (1958‐2020) from statistical downscaling of a regional atmospheric climate model. J. Geophys. Res. Atmos. 1–17. 10.1029/2022jd036688
Huang J. Zhang X. Zhang Q. Lin Y. Hao M. Luo Y. et al. (2017). Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 7, 875–879. 10.1038/s41558-017-0009-5
Irannezhad M. Ronkanen A. K. Kløve B. (2016). Wintertime climate factors controlling snow resource decline in Finland. Int. J. Climatol. 36, 110–131. 10.1002/joc.4332
Kendall M. (1975). Rank correlation measures. London, UK: Charles Griffin: Charles Griffin.
Khan S. A. Colgan W. Neumann T. A. van den Broeke M. R. Brunt K. M. Noël B. et al. (2022). Accelerating ice loss from peripheral glaciers in north Greenland. Geophys. Res. Lett. 49, e2022GL098915. 10.1029/2022GL098915
Koenigk T. Caian M. Nikulin G. Schimanke S. (2016). Regional Arctic sea ice variations as predictor for winter climate conditions. Clim. Dyn. 46, 317–337. 10.1007/s00382-015-2586-1
Kotlarski S. Lüthi D. Schär C. (2015). The elevation dependency of 21st century European climate change: An RCM ensemble perspective. Int. J. Climatol. 35, 3902–3920. 10.1002/joc.4254
Krasting J. P. Broccoli A. J. Dixon K. W. Lanzante J. R. (2013). Future changes in northern hemisphere snowfall. J. Clim. 26, 7813–7828. 10.1175/JCLI-D-12-00832.1
Mahmud M. M. H. I. M. Stuart A. (2019). pyMannKendall: a python package for non parametric Mann Kendall family of trend tests. Biometrika 42, 80. 10.2307/2333424
Mann H. B. (1945). Nonparametric tests against trend. Nonparametric Tests Against Trend 13, 245–259. 10.2307/1907187
McCrystall M. R. Stroeve J. Serreze M. Forbes B. C. Screen J. A. (2021). New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 12, 6765–6812. 10.1038/s41467-021-27031-y
Mernild S. H. Seidenkrantz M. S. Chylek P. Liston G. E. Hasholt B. (2012b). Climate-driven fluctuations in freshwater flux to Sermilik Fjord, East Greenland, during the last 4000 years. Holocene 22, 155–164. 10.1177/0959683611431215
Mernild S. H. Hansen B. U. Jakobsen B. H. Hasholt B. (2008). Climatic conditions at the Mittivakkat glacier catchment (1994-2006), Ammassalik island, SE Greenland, and in a 109-year perspective (1898-2006). Geogr. Tidsskr. 108, 51–72. 10.1080/00167223.2008.10649574
Mernild S. H. Hanna E. Mcconnell J. R. Sigl M. Beckerman A. P. Yde J. C. et al. (2015). Greenland precipitation trends in a long-term instrumental climate context (1890-2012): Evaluation of coastal and ice core records. Int. J. Climatol. 35, 303–320. 10.1002/joc.3986
Mernild S. H. Liston G. E. Hasholt B. Knudsen N. T. (2006). Snow distribution and melt modeling for Mittivakkat glacier, Ammassalik island, southeast Greenland. J. Hydrometeorol. 7, 808–824. 10.1175/JHM522.1
Mernild S. H. Liston G. E. (2010). The Influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, Southeast Greenland. J. Appl. Meteorol. Climatol. 49, 47–67. 10.1175/2009JAMC2065.1
Mernild S. H. Malmros J. K. Yde J. C. Knudsen N. T. (2012a). Multi-decadal marine- and land-terminating glacier recession in the Ammassalik region, southeast Greenland. Cryosphere 6, 625–639. 10.5194/tc-6-625-2012
Mouginot J. Rignot E. Bjørk A. A. van den Broeke M. Millan R. Morlighem M. et al. (2019). Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. U. S. A. 116, 9239–9244. 10.1073/pnas.1904242116
Niwano M. Box J. E. Wehrlé A. Vandecrux B. Colgan W. T. Cappelen J. (2021). Rainfall on the Greenland ice sheet: Present-day climatology from a high-resolution non-hydrostatic polar regional climate model. Geophys. Res. Lett. 48. 10.1029/2021GL092942
Noël B. van de Berg W. J. Lhermitte S. van den Broeke M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv. 5, eaaw0123–11. 10.1126/sciadv.aaw0123
Noël B. Van De Berg W. J. Lhermitte S. Wouters B. Machguth H. Howat I. et al. (2017). A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps. Nat. Commun. 8, 14730. 10.1038/ncomms14730
Noël B. Van De Berg W. J. Van Wessem J. M. Van Meijgaard E. Van As Di. et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 1: Greenland (1958-2016). Cryosphere 12, 811–831. 10.5194/tc-12-811-2018
Pepin N. Bradley R. S. Diaz H. F. Baraer M. Caceres E. B. Forsythe N. et al. (2015). Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430. 10.1038/nclimate2563
Rantanen M. Karpechko A. Y. Lipponen A. Ruosteenoja K. Vihma T. Laaksonen A. et al. (2021). Than the globe since 1979. 1–10. 10.1038/s43247-022-00498-3
Rasmus S. Boelhouwers J. Briede A. Brown I. A. Falarz M. Ingvander S. et al. (2015). “Recent change—terrestrial cryosphere,” in Second assessment of climate change for the Baltic Sea basin. Regional climate studies (Cham: Springer), 117–129. 10.1007/978-3-319-16006-1_6
Schyberg H. Yang X. Køltzow M. A. Ø. Amstrup B. Bakketun Å. Bazile E. et al. (2021). Arctic regional reanalysis on single levels from 1991 to present. 10.24381/cds.713858f6
Shahi S. Abermann J. Heinrich G. Prinz R. Schöner W. (2020). Regional variability and trends of temperature inversions in Greenland. J. Clim. 33, 9391–9407. 10.1175/JCLI-D-19-0962.1
Silva T. Abermann J. Noël B. Shahi S. van de Berg W. J. Schöner W. (2022). The impact of climate oscillations on the surface energy budget over the Greenland Ice Sheet in a changing climate. Cryosphere 16, 3375–3391. 10.5194/tc-16-3375-2022
StatBank Greenland (2022). Available at: https://bank.stat.gl/pxweb/en/Greenland/Greenland__BE__BE01__BE0120/BEXSTD.px/table/tableViewLayout1/ (Accessed October 21, 2022).
van Meijgaard E. van Ulft B. van de Berg W. J. Bosveld F. C. van den Hurk B. Lenderink G. et al. (2008). The KNMI regional atmospheric climate model RACMO version 2.1. Tech. Rep. Tr. - 302, 43.
Vincent L. A. Zhang X. Brown R. D. Feng Y. Mekis E. Milewska E. J. et al. (2015). Observed trends in Canada’s climate and influence of low-frequency variability modes. J. Clim. 28, 4545–4560. 10.1175/JCLI-D-14-00697.1
Wessem J. M. Van Reijmer C. H. Lenaerts J. T. M. Berg W. J. Van De Broeke M. R. Van Den (2014). Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica, Cryosphere, 8, 125–135. 10.5194/tc-8-125-2014
Yang D. Ishida S. Goodison B. E. Gunther T. (1999). Bias correction of daily precipitation measurements for Greenland. J. Geophys. Res. 104, 6171–6181. 10.1029/1998jd200110
Yao J. Yang Q. Mao W. Zhao Y. Xu X. (2016). Precipitation trend-Elevation relationship in arid regions of the China. Glob. Planet. Change 143, 1–9. 10.1016/j.gloplacha.2016.05.007
Yde J. C. Gillespie M. K. Loland R. Ruud H. Mernild S. H. De Villiers S. et al. (2014). Volume measurements of Mittivakkat gletscher, southeast Greenland. J. Glaciol. 60, 1199–1207. 10.3189/2014JoG14J047