Greenland Ice Sheet; ice dynamics; ice velocity; machine learning; seasonality; subglacial hydrology; Green land; Ice dynamics; Ice sheet; Ice velocity; Interannual variability; Machine-learning; Seasonal patterns; Seasonality; Subglacial hydrology; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Accurate projections of the mass loss from the Greenland Ice Sheet (GrIS) require a complete understanding of the ice-dynamic response to climate forcings on seasonal and interannual timescales and would greatly benefit from more observational evidence. Here, we analyze a 5-year, high-resolution data set of ice velocities of the GrIS using K-means, an unsupervised clustering algorithm, to identify ice-sheet wide characteristic seasonal flow patterns. We include all areas flowing >0.3 m/d and obtain an ice-sheet wide overview of the seasonality and the interannual variability. It shows both a spatial and interannual variability in seasonal flow patterns, both along individual glaciers and between glaciers. We compare with runoff from a regional climate model and infer that the ice-sheet wide patterns are linked to the availability of water penetrating to the base of the ice.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Solgaard, A.M. ; Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Rapp, D.; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark ; National Center for Klimaforskning (NCKF), Danish Meteorological Institute (DMI), Copenhagen, Denmark
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Hvidberg, C.S.; National Center for Klimaforskning (NCKF), Danish Meteorological Institute (DMI), Copenhagen, Denmark
Language :
English
Title :
Seasonal Patterns of Greenland Ice Velocity From Sentinel-1 SAR Data Linked to Runoff
NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Funding text :
We thank the editor and two anonymous reviewers for their helpful comments on the original manuscript. Ice velocity maps were produced as part of the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) using Copernicus Sentinel‐1 SAR images distributed by ESA, and were provided by the Geological Survey of Denmark and Greenland (GEUS) at http://www.promice.dk . Brice Noël was funded by the NWO VENI grant VI.Veni.192.019. Anne Solgaard was supported by the Programme for Monitoring the Greenland Ice Sheet (PROMICE). Landsat images in Supporting Information S1 courtesy of the U.S. Geological Survey.We thank the editor and two anonymous reviewers for their helpful comments on the original manuscript. Ice velocity maps were produced as part of the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) using Copernicus Sentinel-1 SAR images distributed by ESA, and were provided by the Geological Survey of Denmark and Greenland (GEUS) at http://www.promice.dk. Brice Noël was funded by the NWO VENI grant VI.Veni.192.019. Anne Solgaard was supported by the Programme for Monitoring the Greenland Ice Sheet (PROMICE). Landsat images in Supporting Information S1 courtesy of the U.S. Geological Survey.
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, H., et al. (2014). Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature, 514(1), 80–83. https://doi.org/10.1038/nature13796
Ashmore, D. W., Mair, D. W. F., Higham, J. E., Brough, S., Lea, J. M., & Nias, I. J. (2022). Proper orthogonal decomposition of ice velocity identifies drivers of flow variability at Sermeq Kujalleq (Jakobshavn Isbræ). The Cryosphere, 16(1), 219–236. https://doi.org/10.5194/tc-16-219-2022
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., & Sole, A. (2010). Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nature Geoscience, 3(6), 408–411. https://doi.org/10.1038/ngeo863
Bevis, M., Harig, C., Khan, S. A., Brown, A., Simons, F. J., Willis, M., et al. (2019). Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proceedings of the National Academy of Sciences of the United States of America, 116(6), 1934–1939. https://doi.org/10.1073/pnas.1806562116.)
Cheng, D., Hayes, W., Larour, E., Mohajerani, Y., Wood, M., Velicogna, I., & Rignot, E. (2021). Calving front machine (CALFIN): Glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019. The Cryosphere, 15(3), 1663–1675. https://doi.org/10.5194/tc-15-1663-2021
Cheng, G., Morlighem, M., Mouginot, J., & Cheng, D. (2022). Helheim glacier’s terminus position controls its seasonal and inter-annual ice flow variability. Geophysical Research Letters, 49(5), e2021GL097085. https://doi.org/10.1029/2021GL097085
Chu, W., Schroeder, D. M., Seroussi, H., Creyts, T. T., Palmer, S. J., & Bell, R. E. (2016). Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophysical Research Letters, 43(24), 12484–12492. https://doi.org/10.1002/2016gl071538
Davison, B. J., Sole, A. J., Cowton, T. R., Lea, J. M., Slater, D. A., Fahrner, D., & Nienow, P. W. (2020). Subglacial drainage evolution modulates seasonal ice flow variability of three tidewater glaciers in southwest Greenland. Journal of Geophysical Research: Earth Surface, 125(9), e2019JF005492. https://doi.org/10.1029/2019JF005492
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., & Nienow, P. W. (2019). The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet. Frontiers of Earth Science, 7. https://doi.org/10.3389/feart.2019.00010
Doyle, S. H., Hubbard, B., Christoffersen, P., Young, T. J., Hofstede, C., Bougamont, M., et al. (2018). Physical conditions of fast glacier flow: 1. Measurements from boreholes drilled to the bed of store glacier, West Greenland. Journal of Geophysical Research: Earth Surface, 123(2), 324–348. https://doi.org/10.1002/2017JF004529
Fox-Kemper, B., Hewitt, H., Xiao, C., Adalgeirsdóttir, G., Drijfhout, S., Edwards, T., et al. (2021). Ocean, cryosphere and sea level change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 1211–1362). Cambridge University Press.
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., et al. (2020). The future seasea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6. The Cryosphere, 14(9), 3071–3096. https://doi.org/10.5194/tc-14-3071-2020
Goliber, S., & Black, T. (2021). TermPicks: A century of Greenland glacier terminus data for use in machine learning applications [Dataset]. https://doi.org/10.5281/zenodo.6557981
Hewitt, I. (2013). Seasonal changes in ice sheet motion due to melt water lubrication. Earth and Planetary Science Letters, 371–372, 16–25. https://doi.org/10.1016/j.epsl.2013.04.022
Joughin, I., Das, S. B., King, M. A., Smith, B. E., Howat, I. M., & Moon, T. (2008). Seasonal speedup along the Western flank of the Greenland Ice Sheet. Science, 320(5877), 781–783. https://doi.org/10.1126/science.1153288
Joughin, I., Smith, B. E., Howat, I. M., Floricioiu, D., Alley, R. B., Truffer, M., & Fahnestock, M. (2012). Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis. Journal of Geophysical Research, 117(F2). https://doi.org/10.1029/2011JF002110
Larsen, S. H., Khan, S. A., Ahlstrom, A. P., Hvidberg, C. S., Willis, M. J., & Andersen, S. B. (2016). Increased mass loss and asynchronous behavior of marine-terminating outlet glaciers at Upernavik Isstrøm, NW Greenland. Journal of Geophysical Research: Earth Surface, 121(2), 241–256. https://doi.org/10.1002/2015JF003507
Lemos, A., Shepherd, A., McMillan, M., & Hogg, A. E. (2018). Seasonal variations in the flow of land-terminating glaciers in central-west Greenland using sentinel-1 imagery. Remote Sensing, 10(12), 1878. https://doi.org/10.3390/rs10121878
Mankoff, K. D., Solgaard, A., Colgan, W., Ahlstrøm, A. P., Khan, S. A., & Fausto, R. S. (2020). Greenland ice sheet solid ice discharge from 1986 through March 2020. Earth System Science Data, 12(2), 1367–1383. https://doi.org/10.5194/essd-12-1367-2020
Moon, T., Joughin, I., & Smith, B. (2015). Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. Journal of Geophysical Research: Earth Surface, 120(5), 818–833. https://doi.org/10.1002/2015JF003494
Moon, T., Joughin, I., Smith, B., van den Broeke, M. R., van de Berg, W. J., Noël, B., & Usher, M. (2014). Distinct patterns of seasonal Greenland glacier velocity. Geophysical Research Letters, 41(20), 7209–7216. https://doi.org/10.1002/2014GL061836
Mouginot, J., & Rignot, E. (2019). Glacier catchments/basins for the Greenland ice sheet [Dataset]. Dryad. https://doi.org/10.7280/D1WT11
Noël, B., van de Berg, W. J., Lhermitte, S., & van den Broeke, M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 5(9). https://doi.org/10.1126/sciadv.aaw0123
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2-Part 1: Greenland (1958–2016). The Cryosphere, 12(3), 811–831. https://doi.org/10.5194/tc-12-811-2018
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Rathmann, N. M., Hvidberg, C. S., Solgaard, A. M., Grinsted, A., Gudmundsson, G. H., Langen, P. L., et al. (2017). Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland. Geophysical Research Letters, 44(19), 9805–9814. https://doi.org/10.1002/2017GL074368
Sakakibara, D., & Sugiyama, S. (2020). Seasonal ice-speed variations in 10 marine-terminating outlet glaciers along the coast of Prudhoe Land, northwestern Greenland. Journal of Glaciology, 66(255), 25–34. https://doi.org/10.1017/jog.2019.81
Schoof, C. (2010). Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803–806. https://doi.org/10.1038/nature09618
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., et al. (2020). Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature.
Slater, T., Hogg, A. E., & Mottram, R. (2020). Ice-sheet losses track high-end sea-level rise projections. Nature Climate Change, 10(10), 879–881. https://doi.org/10.1038/s41558-020-0893-y
Solgaard, A., & Kusk, A. (2021). Greenland ice velocity from sentinel-1 edition 2. [Dataset]. stl. 10.22008/promice/data/sentinel1icevelocity/greenlandicesheet
Solgaard, A., Kusk, A., Merryman Boncori, J. P., Dall, J., Mankoff, K. D., Ahlstrøm, A. P., et al. (2021). Greenland ice velocity maps from the PROMICE project. Earth System Science Data, 13(7), 3491–3512. https://doi.org/10.5194/essd-13-3491-2021
Stevens, L. A., Behn, M. D., Das, S. B., Joughin, I., Noël, B. P. Y., van den Broeke, M. R., & Herring, T. (2016). Greenland ice sheet flow response to runoff variability. Geophysical Research Letters, 43(21), 11295–11303. https://doi.org/10.1002/2016gl070414
Ultee, L., Felikson, D., Minchew, B., Stearns, L. A., & Riel, B. (2022). Helheim glacier ice velocity variability responds to runoff and terminus position change at different timescales. Nature Communications, 13(6022), 6022. https://doi.org/10.1038/s41467-022-33292-y
van de Wal, R. S. W., Boot, W., van den Broeke, M. R., Smeets, C. J. P. P., Reijmer, C. H., Donker, J. J. A., & Oerlemans, J. (2008). Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321(5885), 111–113. https://doi.org/10.1126/science.1158540
van de Wal, R. S. W., Smeets, C. J. P. P., Boot, W., Stoffelen, M., van Kampen, R., Doyle, S. H., et al. (2015). Self-regulation of ice flow varies across the ablation area in south-west Greenland. The Cryosphere, 9(2), 603–611. https://doi.org/10.5194/tc-9-603-2015 https://tc.copernicus.org/articles/9/603/2015/
Vijay, S., Khan, S. A., Kusk, A., Solgaard, A. M., Moon, T., & Bjørk, A. A. (2019). Resolving seasonal ice velocity of 45 Greenlandic glaciers with very high temporal details. Geophysical Research Letters, 46(3), 1485–1495. https://doi.org/10.1029/2018gl081503
Vijay, S., King, M. D., Howat, I. M., Solgaard, A. M., Khan, S. A., & Noël, B. (2021). Greenland ice-sheet wide glacier classification based on two distinct seasonal ice velocity behaviors. Journal of Glaciology, 67(266), 1241–1248. https://doi.org/10.1017/jog.2021.89
Williams, J. J., Gourmelen, N., & Nienow, P. (2020). Dynamic response of the Greenland Ice Sheet to recent cooling. Scientific Reports, 10(1647), 1647. https://doi.org/10.1038/s41598-020-58355-2
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., & Steffen, K. (2002). Surface melt-induced acceleration of Greenland Ice-Sheet flow. Science, 297(5579), 218–222. https://doi.org/10.1126/science.1072708