Greenland; Icesat‐2; ice mass loss; peripheral glacier; satellite altimetry; sea level rise; Green land; Ice clouds; Ice loss; Mass loss; North greenland; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] In recent decades, Greenland's peripheral glaciers have experienced large-scale mass loss, resulting in a substantial contribution to sea level rise. While their total area of Greenland ice cover is relatively small (4%), their mass loss is disproportionally large compared to the Greenland ice sheet. Satellite altimetry from Ice, Cloud, and land Elevation Satellite (ICESat) and ICESat-2 shows that mass loss from Greenland's peripheral glaciers increased from 27.2 ± 6.2 Gt/yr (February 2003-October 2009) to 42.3 ± 6.2 Gt/yr (October 2018-December 2021). These relatively small glaciers now constitute 11 ± 2% of Greenland's ice loss and contribute to global sea level rise. In the period October 2018-December 2021, mass loss increased by a factor of four for peripheral glaciers in North Greenland. While peripheral glacier mass loss is widespread, we also observe a complex regional pattern where increases in precipitation at high altitudes have partially counteracted increases in melt at low altitude.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Khan, Shfaqat A ; DTU Space Technical University of Denmark Kongens Lyngby Denmark
Colgan, William ; Department of Glaciology and Climate Geological Survey of Denmark and Greenland Copenhagen Denmark
Neumann, Thomas A; NASA Goddard Space Flight Center Greenbelt MD USA
van den Broeke, Michiel R ; Institute for Marine and Atmospheric Research Utrecht Utrecht University Utrecht The Netherlands
Brunt, Kelly M ; NASA Goddard Space Flight Center Greenbelt MD USA ; Earth System ScienceInterdisciplinary Center University of Maryland College Park MD USA
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht Utrecht University Utrecht The Netherlands
Bamber, Jonathan L ; Bristol Glaciology Centre University of Bristol Bristol UK ; Department of Aerospace and Geodesy Data Science in Earth Observation Technical University of Munich Munich Germany
Hassan, Javed; DTU Space Technical University of Denmark Kongens Lyngby Denmark
Bjørk, Anders A; Department of Geosciences and Natural Resources University of Copenhagen Copenhagen Denmark
Language :
English
Title :
Accelerating Ice Loss From Peripheral Glaciers in North Greenland.
S. A. Khan acknowledges support from the Independent Research Fund Denmark—Natural Sciences Grant Nos. 1026‐00085B and Villum Fonden (Villum Experiment Programme) Project No. 40718. W. Colgan acknowledges support from the Independent Research Fund Denmark Grant No. 8049‐00003. B. B. Noël was funded by the NWO VENI grant VI.Veni.192.019. M. R. van den Broeke acknowledges support from the Netherlands Earth System Science Centre. T. A. Neumann and K. M. Brunt acknowledge support from the ICESat‐2 Project Science Office, J. L. Bamber received funding by the European Research Council (GlobalMass; Grant No. 694188) and the German Federal Ministry of Education and Research (BMBF) in the framework of the international future lab AI4EO (Grant No. 01DD20001). Finally, we thank two anonymous reviewers for insightful and constructive comments.S. A. Khan acknowledges support from the Independent Research Fund Denmark—Natural Sciences Grant Nos. 1026-00085B and Villum Fonden (Villum Experiment Programme) Project No. 40718. W. Colgan acknowledges support from the Independent Research Fund Denmark Grant No. 8049-00003. B. B. Noël was funded by the NWO VENI grant VI.Veni.192.019. M. R. van den Broeke acknowledges support from the Netherlands Earth System Science Centre. T. A. Neumann and K. M. Brunt acknowledge support from the ICESat-2 Project Science Office, J. L. Bamber received funding by the European Research Council (GlobalMass; Grant No. 694188) and the German Federal Ministry of Education and Research (BMBF) in the framework of the international future lab AI4EO (Grant No. 01DD20001). Finally, we thank two anonymous reviewers for insightful and constructive comments.
Bahr, D. B., Pfeffer, W. T., Sassolas, C., & Meier, M. F. (1998). Response times of glaciers as a function of size and mass balance: 1. Theory. Journal of Geophysical Research, 103(B5), 9777–9782. https://doi.org/10.1029/98JB00507
Bamber, J. L., Westaway, R. M., Marzeion, B., & Wouters, B. (2018). The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13(6), 063008. https://doi.org/10.1088/1748-9326/aac2f0
Bolch, T., Sandberg Sørensen, L., Simonsen, S. B., Mölg, N., Machguth, H., Rastner, P., & Paul, F. (2013). Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat data. Geophysical Research Letters, 40, 875–881. https://doi.org/10.1002/grl.50270
Cai, L. A., Vladimir, A., Walsh, J. E., & Bhatt, U. S. (2018). Patterns, impacts, and future projections of summer variability in the Arctic from CMIP5 models. Journal of Climate, 31(24), 9815–9833. https://doi.org/10.1175/JCLI-D-18-0119.1
Citterio, M., & Ahlstrøm, A. P. (2013). Brief communication “The aerophotogrammetric map of Greenland ice masses”. The Cryosphere, 7(2), 445–449. https://doi.org/10.5194/tc-7-445-2013
Colgan, W., Luthcke, S., Abdalati, W., & Citterio, M. (2013). Constraining GRACE-derived cryosphere-attributed signal to irregularly shaped ice-covered areas. The Cryosphere, 7(6), 1901–1914. https://doi.org/10.5194/tc-7-1901-2013
Gardner, A., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857. https://doi.org/10.1126/science.1234532
Hanna, E., Cropper, T. E., Hall, R. J., & Cappelen, J. (2016). Greenland blocking index 1851–2015: A regional climate change signal. International Journal of Climatology, 36, 4847–4861. https://doi.org/10.1002/joc.4673
Hurkmans, R. T. W. L., Bamber, J. L., Davis, C. H., Joughin, I. R., Khvorostovsky, K. S., Smith, B. S., & Schoen, N. (2014). Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry. The Cryosphere, 8, 1725–1740. https://doi.org/10.5194/tc-8-1725-2014
Huss, M., & Farinotti, D. (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research, 117, F04010. https://doi.org/10.1029/2012JF002523
IMBIE Team. (2020). Mass balance of the Greenland ice sheet from 1992 to 2018. Nature, 579, 233–239. https://doi.org/10.1038/s41586-019-1855-2
Khan, S. A., Bamber, J. L., Rignot, E., Helm, V., Aschwanden, A., Holland, D. M., et al. (2022). Greenland mass trends from airborne and satellite altimetry during 2011-2020. Journal of Geophysical Research: Earth Surface, 127(4), e2021JF006505. https://doi.org/10.1029/2021JF006505
Khan, S. A., Sasgen, I., Bevis, M., vanDam, T., Bamber, J. L., Wahr, J., et al. (2016). Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2, e1600931. https://doi.org/10.1126/sciadv.1600931
Laske, G., Masters, G., & Reif, C. (2012). CRUST 2.0: A new global crustal model at 2x2 degrees. Retrieved from https://igppweb.ucsd.edu/∼gabi/rem.html
Millan, R., Mouginot, J., Rabatel, A., & Morlighem, M. (2022). Ice velocity and thickness of the world's glaciers. Nature Geoscience, 15, 124–129. https://doi.org/10.1038/s41561-021-00885-z
Nielsen, K., Khan, S. A., Spada, G., Wahr, J., Bevis, M., Liu, L., & Dam, T. (2013). Vertical and horizontal surface displacements near Jakobshavn Isbræ driven by melt-induced and dynamic ice loss. Journal of Geophysical Research: Solid Earth, 118, 1837–1844. https://doi.org/10.1002/jgrb.50145
Noël, B., Jakobs, C. L., vanPelt, W. J. J., Lhermitte, S., Wouters, B., Kohler, J., et al. (2020). Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications, 11, 4597. https://doi.org/10.1038/s41467-020-18356-1
Noël, B., Jan van de Berg, W., Lhermitte, S., & vanden Broeke, M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 5(9), eaaw0123. https://doi.org/10.1126/sciadv.aaw0123
Noël, B., vande Berg, W., Lhermitte, S., Wouters, B., Machguth, H., Howat, I., et al. (2017). A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Communications, 8, 14730. https://doi.org/10.1038/ncomms14730
Noël, B., vande Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2, Part 1: Greenland (1958–2016). The Cryosphere, 12, 811–831. https://doi.org/10.5194/tc-12-811-2018
Overland, J., Dunlea, E., Box, J. E., Corell, R., Forsius, M., Kattsov, V., et al. (2019). The urgency of Arctic change. Polar Science, 21, 6–13. https://doi.org/10.1016/j.polar.2018.11.008
Pedersen, M., Weng, W. L., Keulen, N., & Kokfelt, T. (2013). A new seamless digital 1:500, 000 scale geological map of Greenland. Geol. Surv. Den. Greenl., 28, 65–68. https://doi.org/10.34194/geusb.v28.4727
Rastner, P., Bolch, T., Mölg, N., Machguth, H., Le Bris, R., & Paul, F. (2012). The first complete inventory of the local glaciers and ice caps on Greenland. The Cryosphere, 6, 1483–1495. https://doi.org/10.5194/tc-6-1483-2012
Sasgen, I., Salles, A., Wegmann, M., Wouters, B., Fettweis, X., Noel, B. P. Y., & Beck, C. (2022). Arctic glaciers record wavier circumpolar winds. Nature Climate Change, 12, 249–255. https://doi.org/10.1038/s41558-021-01275-4
Sasgen, I., Wouters, B., Gardner, A. S., King, M. D., Tedesco, M., Landerer, F. W., et al. (2020). Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Communications Earth & Environment, 1, 8. https://doi.org/10.1038/s43247-020-0010-1
Schenk, T., & Csatho, B. (2012). A new methodology for detecting ice sheet surface elevation changes from laser altimetry data. IEEE Transactions on Geoscience and Remote Sensing, 50(9), 3302–3316. https://doi.org/10.1109/TGRS.2011.2182357
Shepherd, A., Ivins, E., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183–1189. https://doi.org/10.1126/science.1228102
Smith, B., Fricker, H. A., Gardner, A., Siegfried, M. R., Adusumilli, S., Csathó, B. M., et al. (2021). ATLAS/ICESat-2 L3A land ice height, Version 4. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL06.004
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., et al. (2020). Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368(6496), 1239–1242. https://doi.org/10.1126/science.aaz5845
Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., et al. (2011). Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – The impact of interpolation, sampling and firn density. The Cryosphere, 5, 173–186. https://doi.org/10.5194/tc-5-173-2011
van Angelen, J. H., Lenaerts, J. T. M., vanden Broeke, M. R., Fettweis, X., & van Meijgaard, E. (2013). Rapid loss of firn pore space accelerates 21st century Greenland mass loss. Geophysical Research Letters, 40, 2109–2113. https://doi.org/10.1002/grl.50490
Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., & Gao, P. (2012). Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Computers & Geosciences, 49, 190–199. https://doi.org/10.1016/j.cageo.2012.06.022
Wouters, B., Gardner, A. S., & Moholdt, G. (2019). Global glacier mass loss during the GRACE satellite mission (2002–2016). Frontiers of Earth Science, 7, 96. https://doi.org/10.3389/feart.2019.00096
Zwally, H. J., Schutz, R., Hancock, D., & Dimarzio, J. (2014). GLAS/ICESat L2Global Antarctic and Greenland ice sheet altimetry data (HDF5), Version 34. [2003-2009]. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ICESAT/GLAS/DATA209
Csatho, B. M., Schenk, A. F., vander Veen, C. J., Babonis, G., Duncan, K., Rezvanbehbahani, S., et al. (2014). Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proceedings of the National Academies of Sciences, 111(52), 18478–18483. https://doi.org/10.1073/pnas.1411680112
Herron, M. M., & Langway, C. C. (1980). Firn densification: An empirical model. Journal of Glaciology, 25(93), 373–385. https://doi.org/10.3189/S0022143000015239
Khan, S., Kjær, K., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., et al. (2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change, 4, 292–299. https://doi.org/10.1038/nclimate2161
Kuipers Munneke, P., Ligtenberg, S. R. M., Noel, B. P. Y., Howat, I. M., Box, J. E., Mosley-Thompson, E., et al. (2015). Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. The Cryosphere, 9(6), 2009–2025. https://doi.org/10.5194/tc-9-2009-2015
Ligtenberg, S. R. M., Kuipers Munneke, P., Noël, B. P. Y., & vanden Broeke, M. R. (2018). Brief communication: Improved simulation of the present-day Greenland firn layer (1960–2016). The Cryosphere, 12, 1643–1649. https://doi.org/10.5194/tc-12-1643-2018
Reeh, N., Fisher, D. A., Koerner, R. M., & Clausen, H. B. (2005). An empirical firn-densification model comprising ice lenses. Annals of Glaciology, 42, 101–106. https://doi.org/10.3189/172756405781812871
Zwally, H. J., & Li, J. (2002). Seasonal and interannual variations of firn densification and ice-sheet surface elevation at the Greenland summit. Journal of Glaciology, 48(161), 199–207. https://doi.org/10.3189/172756502781831403