Blue Blob; climate projection; glaciers; Iceland; RACMO; surface mass balance; Blue blob; Climate projection; Icelandic glaciers; Icelands; Mass loss; Mass loss rate; North Atlantic; Regional cooling; Surface mass balance; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Icelandic glaciers have been losing mass since the Little Ice Age in the mid-to-late 1800s, with higher mass loss rates in the early 21st century, followed by a slowdown since 2011. As of yet, it remains unclear whether this mass loss slowdown will persist in the future. By reconstructing the contemporary (1958–2019) surface mass balance of Icelandic glaciers, we show that the post-2011 mass loss slowdown coincides with the development of the Blue Blob, an area of regional cooling in the North Atlantic Ocean to the south of Greenland. This regional cooling signal mitigates atmospheric warming in Iceland since 2011, in turn decreasing glacier mass loss through reduced meltwater runoff. In a future high-end warming scenario, North Atlantic cooling is projected to mitigate mass loss of Icelandic glaciers until the mid-2050s. High mass loss rates resume thereafter as the regional cooling signal weakens.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Aðalgeirsdóttir, Guðfinna ; Institute of Earth Sciences, University of Iceland, Reykjavìk, Iceland
Pálsson, Finnur ; Institute of Earth Sciences, University of Iceland, Reykjavìk, Iceland
Wouters, Bert ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands ; Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, Netherlands
Lhermitte, Stef ; Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, Netherlands
Haacker, Jan M.; Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, Netherlands
van den Broeke, Michiel R. ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
North Atlantic Cooling is Slowing Down Mass Loss of Icelandic Glaciers
NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek NESSC - Netherlands Earth System Science Centre
Funding text :
B. Noël was funded by the NWO VENI grant VI.Veni.192.019. B. Wouters and J. M. Haacker were funded by NWO VIDI Grant 016.Vidi.171.063. This publication was also supported by the Netherlands Earth System Science Centre (NESSC) and PROTECT. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869 304, PROTECT contribution number 28.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aðalgeirsdóttir, G., Pálsson, F., Thorsteinsson, T., Magnússon, E., Belart, J. M. C., Jóhannesson, T., et al. (2020). Glacier changes in Iceland from 1890 to 2019. Frontiers in Earth Science, 8(523646), 1–15. https://doi.org/10.3389/feart.2020.523646
Bailey, D., Hunke, E., DuVivier, A., Lipscomb, B., Bitz, C., Holland, M., et al. (2018). CESM CICE5 Users Guide, Release CESM CICE5. Documentation and Software User’s Manual from Los Alamos National Laboratory (pp. 1–41). Retrieved from http://www.cesm.ucar.edu/models/cesm2/sea-ice/
Björnsson, H., & Pálsson, F. (2020). Radio-echo soundings on Icelandic temperate glaciers: History of techniques and findings. Annals of Glaciology, 61(81), 25–34. https://doi.org/10.1017/aog.2020.10
Björnsson, H., Pálsson, F., Gudmundsson, S., Magnússon, E., Aðalgeirsdóttir, G., Jóhannesson, T., et al. (2013). Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age. Geophysical Research Letters, 40(8), 1546–1550. https://doi.org/10.1002/grl.50278
Box, J. E., Colgan, W. T., Wouters, B., Burgess, D. O., O’Neel, S., Thomson, L. I., & Mernild, S. H. (2018). Global sea-level contribution from Arctic land ice: 1971–2017. Environmental Research Letters, 13(12). 125012. https://doi.org/10.1088/1748-9326/aaf2ed
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., & Steffen, K. (2012). Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers. The Cryosphere, 6(4), 821–839. https://doi.org/10.5194/tc-6-821-2012
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., & Saba, V. (2018). Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature Climate Change, 556, 191–196. https://doi.org/10.1038/s41586-018-0006-5
Ciraci, E., Velicogna, I., & Swenson, S. (2020). Continuity of the mass loss of the World’s glaciers and IceCaps from the GRACE and GRACE follow-on missions. Geophysical Research Letters, 47(9), e2019GL086926. https://doi.org/10.1029/2019GL086926
Cogley, J., Hock, R., Rasmussen, L., Arendt, A., Bauder, A., Braithwaite, R., et al. (2011). Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2. Paris: UNESCO-IHP.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. https://doi.org/10.1002/qj.828
ECMWF-IFS. (2008). Part IV: PHYSICAL PROCESSES (CY33R1). Technical Report.
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Box, J. E., & Steffen, K. (2010). Climate of the Greenland ice sheet using a high-resolution climate model—Part 1: Evaluation. The Cryosphere, 4, 511–527. https://doi.org/10.5194/tc-4-511-2010
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A. (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12, 168–173. https://doi.org/10.1038/s41561-019-0300-3
Fausto, R. S., van As, D., Box, J. E., Colgan, W., Langen, P. L., & Mottram, R. H. (2016). The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012. Geophysical Research Letters, 43(6), 2649–2658. https://doi.org/10.1002/2016GL067720
Foresta, L., Gourmelen, N., Pálsson, F., Nienow, P., Björnsson, H., & Shepherd, A. (2016). Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry. Geophysical Research Letters, 43(23), 12138–12145. https://doi.org/10.1002/2016GL071485
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdòttir, G., Drijfhout, S. S., Edwards, T. L., et al. (2021). Ocean, cryosphere and sea level change. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. IPCC.
Garcia-Mondéjar, A., Gourmelen, N., Escorihuela, M. J., Roca, M., Shepherd, A., & Plummer, S. (2019). Multisurface retracker for swath processing of interferometric radar altimetry. IEEE Geoscience and Remote Sensing Letters, 16(12), 1839–1843. https://doi.org/10.1109/LGRS.2019.2913635
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857. https://doi.org/10.1126/science.1234532
Gascoin, S., Guðmundsson, S., Aðalgeirsdóttir, G., Pálsson, F., Schmidt, L., Berthier, E., & Björnsson, H. (2017). Evaluation of MODIS albedo product over ice caps in Iceland and impact of volcanic eruptions on their albedo. Remote Sensing, 9(399). https://doi.org/10.3390/rs9050399
Gervais, M., Shaman, J., & Kushnir, Y. (2018). Mechanisms governing the development of the north Atlantic warming hole in the CESM-LE future climate simulations. American Meteorological Society, 31(15), 5927–5946. https://doi.org/10.1175/JCLI-D-17-0635.1
Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale, R. B., Bogenschutz, P. A., & Simpson, I. R. (2019). The Single Column Atmosphere Model Version 6 (SCAM6): Not a scam but a tool for model evaluation and development. Journal of Advances in Modeling Earth Systems, 11(5), 1381–1401. https://doi.org/10.1029/2018MS001578
Gudmundsson, M. T., Thordarson, T., Höskuldsson, Á., Larsen, G., Björnsson, H., Prata, F. J., et al. (2012). Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Scientific Reports, 2(572), 12. https://doi.org/10.1038/srep00572
Gunnarsson, A., Gardarsson, S. M., Pálsson, F., Jóhannesson, T., & Sveinsson, Ó. G. B. (2021). Annual and inter-annual variability and trends of albedo of Icelandic glaciers. The Cryosphere, 15(2), 547–570. https://doi.org/10.5194/tc-15-547-2021
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horànyi, A., Munoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., et al. (2019). High mountain areas. In IPCC special report on the ocean and cryosphere in a changing climate. IPCC SROCC.
Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 514(482), 514–518. https://doi.org/10.1038/nature10847
Jóhannesson, T., Pálmason, B., Hjartarson, A., Jarosch, A. H., Magnússon, E., Belart, J. M. C., & Gudmundsson, M. T. (2020). Non-surface mass balance of glaciers in Iceland. Journal of Glaciology, 66(258), 685–697. https://doi.org/10.1017/jog.2020.37
Josey, S. A., Hirschi, J. J.-M., Sinha, B., Duchez, A., Grist, J. P., & Marsh, R. (2017). The recent Atlantic cold anomaly: Causes, consequences, and related phenomena. Annual Reviews of Marine Science, 10, 475–501. https://doi.org/10.1146/annurev-marine-121916-063102
Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D., & Ghosh, R. (2020). Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 10, 667–671. https://doi.org/10.1038/s41558-020-0819-8
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., et al. (2019). The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11(12), 4245–4287. https://doi.org/10.1029/2018MS001583
Lenaerts, J. T. M., van den Broeke, M. R., Angelen, J. H., van Meijgaard, E., & Déry, S. J. (2012). Drifting snow climate of the Greenland ice sheet: A study with a regional climate model. The Cryosphere, 6, 891–899. https://doi.org/10.5194/tc-6-891-2012
Ligtenberg, S. R. M., Helsen, M. M., & van den Broeke, M. R. (2011). An improved semi-empirical model for the densification of Antarctic firn. The Cryosphere, 5, 809–819. https://doi.org/10.5194/tc-5-809-2011
Ligtenberg, S. R. M., Munneke, P. K., Noël, B., & van den Broeke, M. R. (2018). Brief communication: Improved simulation of the present-day Greenland firn layer (1960-2016). The Cryosphere, 12(5), 1643–1649. https://doi.org/10.5194/tc-12-1643-2018
Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R., Bradley, S. L., et al. (2019). Description and evaluation of the community ice sheet model (CISM) v2.1. Geoscientific Model Development, 12(1), 387–424. https://doi.org/10.5194/gmd-12-387-2019
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., et al. (2019). Polar regions. In IPCC special report on the ocean and cryosphere in a changing climate. IPCC SROCC.
Möller, R., Dagsson-Waldhauserova, P., Möller, M., Kukla, P. A., Schneider, C., & Gudmundsson, M. T. (2019). Persistent albedo reduction on southern Icelandic glaciers due to ashfall from the 2010 Eyjafjallajökull eruption. Remote Sensing of Environment, 23, 111396. https://doi.org/10.1016/j.rse.2019.111396
Nilsson, J., Sørensen, L. S., Barletta, V. R., & Forsberg, R. (2015). Mass changes in Arctic ice caps and glaciers: Implications of regionalizing elevation changes. The Cryosphere, 9(1), 139–150. https://doi.org/10.5194/tc-9-139-2015
Noël, B., van de Berg, W. J., Lhermitte, S., & van den Broeke, M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 5(9), eaaw0123. https://doi.org/10.1126/sciadv.aaw0123
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., & van den Broeke, M. R. (2016). A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). The Cryosphere, 10(5), 2361–2377. https://doi.org/10.5194/tc-10-2361-2016
Noël, B., van de Berg, W. J., van Meijgaard, E., Munneke, P. K., van de Wal, R. S. W., & van den Broeke, M. (2015). Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland ice sheet. The Cryosphere, 9, 1831–1844. https://doi.org/10.5194/tc-9-1831-2015
Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J., & van den Broeke, M. R. (2021). A 21st century warming threshold for sustained Greenland ice sheet mass loss. Geophysical Research Letters, 48(5), e2020GL090471. https://doi.org/10.1029/2020GL090471
Pálsson, F., Gunnarsson, A., Jónsson, G., Pálsson, H. S., & Steinpórsson, S. (2020). Vatnajökull: Mass balance, meltwater drainage and surface velocity of the glacial year 2018–19. Institute of Earth Sciences University of Iceland and National Power Company.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., et al. (2018). ArcticDEM. Harvard Dataverse. https://doi.org/10.7910/DVN/OHHUKH
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature, 5, 475–480. https://doi.org/10.1038/nclimate2554
RGI Consortium. (2017). Randolph Glacier Inventory—A dataset of global glacier outlines: Version 6.0. Technical Report. Global land ice measurements from space. https://doi.org/10.7265/N5-RGI-60
Schmidt, L. S., Aðalgeirsdóttir, G., Guðmundsson, S., Langen, P. L., Pálsson, F., Mottram, R., et al. (2017). The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: Evaluating the surface energy budget in a regional climate model with automatic weather station observations. The Cryosphere, 11(4), 1165–1184. https://doi.org/10.5194/tc-11-1665-2017
Schrama, E., Wouters, B., & Rietbroek, R. (2014). A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. Journal of Geophysical Research, 119(7), 6048–6066. https://doi.org/10.1002/2013JB010923
Siemes, C., Ditmar, P., Riva, R. E. M., Slobbe, D. C., Liu, X. L., & Farahani, H. H. (2013). Estimation of mass change trends in the Earth’s system on the basis of GRACE satellite data, with application to Greenland. Journal of Geodesy, 87, 69–87. https://doi.org/10.1007/s00190-012-0580-5
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., et al. (2010). The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM). Report LAUR-01853, 141, 1–140.
Sørensen, L. S., Jarosch, A. H., Aðalgeirsdóttir, G., Barletta, V. R., Forsberg, R., Pálsson, F., et al. (2017). The effect of signal leakage and glacial isostatic rebound on GRACE-derived ice mass changes in Iceland. Geophysical Journal International, 209(1), 226–233. https://doi.org/10.1093/gji/ggx008
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., et al. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961–3012.
Van Angelen, J. H., Lenaerts, J. T. M., Lhermitte, S., Fettweis, X., Munneke, P. K., van den Broeke, M. R., et al. (2012). Sensitivity of Greenland ice sheet surface mass balance to surface albedo parameterization: A study with a regional climate model. The Cryosphere, 6, 1175–1186. https://doi.org/10.5194/tc-6-1175-2012
Van de Berg, W. J., & Medley, B. (2016). Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica. The Cryosphere, 10, 459–463. https://doi.org/10.5194/tc-10-459-2016
Von Hippel, M., & Harig, C. (2019). Long-term and inter-annual mass changes in the Iceland ice cap determined from GRACE gravity using Slepian functions. Frontiers in Earth Science, 7(171), 1–10. https://doi.org/10.3389/feart.2019.00171
Wouters, B., Chambers, D., & Schrama, E. J. O. (2008). GRACE observes small-scale mass loss in Greenland. Geophysical Research Letters, 35(20), L20501. https://doi.org/10.1029/2008GL034816
Wouters, B., Gardner, A., & Moholdt, G. (2019). Global glacier mass loss during the GRACE satellite mission (2002–2016). Frontiers in Earth Sicence, 7(96), 11. https://doi.org/10.3389/feart.2019.00096
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., et al. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568, 382–386. https://doi.org/10.1038/s41586-019-1071-0
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.