[en] Coastal habitats have long been recognised to be nurseries and growing grounds for many marine organisms. Worldwide, coastal hardening and urbanisation are leading to the removal of natural ecosystems. The tropical island of Bora-Bora in the South Pacific has undergone extensive coastal changes, with the construction of seawalls along more than half of its coastline since the 1950s. The daytime and night-time juvenile and adult fish communities were surveyed with multiple temporal replicates on a range of lagoon and coastal habitats on Bora-Bora. Over 47% of all fish on coastal habitats were juveniles. Mangroves, traditionally viewed as nurseries, had a high daytime and night- time abundance of juveniles, but less than 1% of the coastline of Bora-Bora consists of mangroves. The manmade seawalls, which are the most common type of coastal habitat on the island, were associated with lower juvenile densities during the day and promoted the presence of predators. The comparison of coastal and lagoon sites also highlighted contrasting life history strategies depending on coral reef fish species: although many favour coastal habitats as juveniles, others do not undergo ontogenetic shifts and thus other habitats must be considered when designing management plans to protect juvenile fish. Overall, our surveys show the importance of natural coastal zones in the lifecycle of numerous coral reef fish species in the lagoon of Bora-Bora and highlight the potential long-term impacts of coastal
hardening on fish communities.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Gairin, Emma; Okinawa Institute of Science and Technology, Tancha, Okinawa, Japan ; Département de Biologie, École Normale Supérieure, Université PSL, Paris, France
Minier, Lana; EPHE, PSL Research University, UPVD-CNRS, Papetoai, Moorea, UAR, French Polynesia ; Laboratoire d'Excellence "CORAIL", Perpignan, France ; Polynésienne des Eaux, Bora-Bora, Vaitape, French Polynesia
Claverie, Thomas; UMR MARBEC, Centre Universitaire de Formation et de Recherche de Mayotte, Mayotte, France
Dromard, Charlotte; Laboratoire d'Excellence "CORAIL", Perpignan, France ; Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Bâtiment de Biologie Marine, Université des Antilles -MNHN -CNRS, Pointe-à-Pitre, Guadeloupe
Maueau, Tehani; Association Ia Vai Ma Noa Bora-Bora, Bora-Bora ; French Polynesia
Collin, Antoine; Laboratoire d'Excellence "CORAIL", Perpignan, France ; EPHE-PSL University, CNRS LETG, Dinard, France
Frederich, Bruno ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecologie évolutive
Bertucci, Frédéric ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Morphologie fonctionnelle et évolutive ; EPHE, PSL Research University, UPVD-CNRS, Papetoai, Moorea, UAR, French Polynesia
Lecchini, David; EPHE, PSL Research University, UPVD-CNRS, Papetoai, Moorea, UAR, French Polynesia ; Laboratoire d'Excellence "CORAIL", Perpignan, France
Language :
English
Title :
Coral reef fish communities of natural habitats and man-made coastal structures in Bora-Bora (French Polynesia)
Publication date :
May 2023
Journal title :
Belgian Journal of Zoology
ISSN :
0777-6276
eISSN :
2295-0451
Publisher :
Koninklijke Belgische Vereniging voor Dierkunde, Belgium
Adams A.J., Dahlgren C.P., Kellison G.T., Kendall M.S., Layman C.A., Ley J.A., Nagelkerken I. & Serafy J. (2006). Nursery function of tropical back-reef systems. Marine Ecology Progress Series 318: 287–301. https://doi.org/10.3354/meps318287
Barnes L., Bellwood D.R., Sheaves M. & Tanner J.K. (2012). The use of clear-water non-estuarine mangroves by reef fishes on the Great Barrier Reef. Marine Biology 159 (1): 211–220. https://doi.org/10.1007/s00227-011-1801-9
Beck M.W., Heck K.L., Able K.W., Childers D.L., Eggleston D.B., Gillanders B.W., Halpern B., Hays C.G., Hoshino K., Minello T.J., Orth R.J., Sheridan P.F. & Weinstein M.P. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. BioScience 51: 633–641. https://doi.org/10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2
Becker A. & Suthers I.M. (2014). Predator driven diel variation in abundance and behaviour of fish in deep and shallow habitats of an estuary. Estuarine, Coastal and Shelf Science 144: 82–88. https://doi.org/10.1016/j.ecss.2014.04.012
Bugnot A.B., Mayer-Pinto M., Airoldi L., Heery E.C., Johnston E.L., Critchley L.P., Strain E.M.A., Morris R.L., Loke L.H.L., Bishop M.J. & Sheehan E.V. (2021). Current and projected global extent of marine built structures. Nature Sustainability 4 (1): 33–41. https://doi.org/10.1038/s41893-020-00595-1
Cavaloc E. (1988). Palétuviers Moorea: Colonisation des Rhizophora récemment introduits à Moorea (Société, Polynésie française). In: Bilan de Répartition et Conséquences Écologiques; Rapport 111; EPHE-CRIOBE-Naturalia et Biologia. Moorea, Polynésie Française, France.
Cheminée A., Le Direach L., Rouanet E., Astruch P., Goujard A., Blanfune A., Bonhomme D., Chassaing L., Jouvenel J.-Y., Ruitton S., Thibaut T. & Harmelin-Vivien M. (2021). All shallow coastal habitats matter as nurseries for Mediterranean juvenile fish. Scientific Reports 11: 14631. https://doi.org/10.1038/s41598-021-93557-2
Chittaro P.M., Usseglio P. & Sale P.F. (2005). Variation in fish density, assemblage composition and relative rates of predation among mangrove, seagrass and coral reef habitats. Environmental Biology of Fishes 72: 175–187. https://doi.org/10.1007/s10641-004-9077-2 64
Cooper J.A.G. & Jackson D.W.T. (2019). Coasts in Peril? A Shoreline Health Perspective. Frontiers in Earth Sciences 7: 260. https://doi.org/10.3389/feart.2019.00260
Dahlgren C.P., Kellison G.T., Adams A.J., Gillanders B.M., Kendall M.S., Layman C.A., Ley J.A., Nagelkerken I. & Serafy J.E. (2006). Marine nurseries and effective juvenile habitats: concepts and applications. Marine Ecology Progress Series 312: 291–295. https://doi.org/10.3354/meps312291
Danilowicz B.S. & Sale P.F. (1999). Relative intensity of predation on the French grunt, Haemulon flavolineatum, during diurnal, dusk, and nocturnal periods on a coral reef. Marine Biology 133: 337–343.
Gasc J., Gache C., Bertucci F., Moussa R.M., Waqalevu V. & Lecchini D. (2021). Effects of coastline modification on coral reef fish nurseries (Moorea, French Polynesia). Journal of Coastal Research 37 (4): 842–851. https://doi.org/10.2112/JCOASTRES-D-20-00060.1
Gairin E., Collin A., James D., Maueau T., Roncin Y., Lefort L., Dolique F., Jeanson M. & Lecchini D. (2021). Spatiotemporal Trends of Bora Bora’s shoreline classification and movement using high-resolution imagery from 1955 to 2019. Remote Sensing 13: 4692. https://doi.org/10.3390/rs13224692
Gairin E., Collin A., James D., Dolique F., Jeanson M. & Lecchini D. (2022). Multi-decadal coastal evolution of remote Pacific islands: armouring of Taha’a, Raiatea, Maupiti, and Rangiroa (French Polynesia). Regional Environmental Change 22 (4): 1–8. https://doi.org/10.1007/s10113-022-01977-1
Gillanders B.M. (2002). Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Marine Ecology Progress Series 240: 215–223. https://doi.org/10.3354/meps240215
Gittman R.K., Scyphers S.B., Smith C.S., Neylan I.P. & Grabowski J.H. (2016). Ecological consequences of shoreline hardening: a meta-analysis. Bioscience 66 (9): 763–773. https://doi.org/10.1093/biosci/biw091
Gracia A., Rangel-Buitrago N., Oakley J.A. & Williams A.T. (2018). Use of ecosystems in coastal erosion management. Ocean & Coastal Management 156: 277–289. https://doi.org/10.1016/j.ocecoaman.2017.07.009
Grol M.G., Rypel A.L. & Nagelkerken I. (2014). Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Marine Ecology Progress Series 502: 229-244. https://doi.org/10.3354/meps10682
Hamilton R.J., Almany G.R., Brown C.J., Pita J., Peterson N.A. & Choat J.H. (2017). Logging degrades nursery habitat for an iconic coral reef fish. Biological Conservation 210: 273–280. https://doi.org/10.1016/j.biocon.2017.04.024
Honda K., Nakamura Y., Nakaoka M., Uy W.H. & Fortes M.D. (2013). Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 8(8): e65735. https://doi.org/10.1371/journal.pone.0065735
Jones G.P. (1990). The importance of recruitment to the dynamics of a coral reef fish population. Ecology 71 (5): 1691–1698. https://doi.org/10.2307/1937578
Komyakova V., Munday P.L. & Jones G.P. (2019). Comparative analysis of habitat use and onto-genetichabitat-shifts among coral reef damselfishes. Environmental Biology of Fishes 102 (9): 1201– 1218. https://doi.org/10.1007/s10641-019-00903-5
Komyakova V. & Swearer S.E. (2019). Contrasting patterns in habitat selection and recruitment of temperate reef fishes among natural and artificial reefs. Marine environmental research 143: 71–81. https://doi.org/10.1016/j.marenvres.2018.11.005
Kornis M.S., Bilkovic D.M., Davias L.A. Giordano S. & Breitburg D.L. (2018). Shoreline hardening affects nekton biomass, size structure, and taxonomic diversity in nearshore waters, with responses mediated by functional species groups. Estuaries and Coasts 41 (1): 159–179. https://doi.org/10.1007/s12237-017-0214-5
Lecchini D. & Galzin R. (2005). Spatial repartition and ontogenetic shifts in habitat use by coral reef fishes (Moorea, French Polynesia). Marine Biology 147: 47–58. https://doi.org/10.1007/s00227-004-1543-z
Lecchini D., Peyrusse K., Lanyon R.G. & Lecellier G. (2014). Importance of visual cues of con-specifics and predators during the habitat selection of coral reef fish larvae. Comptes Rendus Biologies 337 (5): 345–351. https://doi.org/10.1016/j.crvi.2014.03.007
Lecchini D., Dixson D.L., Lecellier G., Roux N., Frédérich B., Besson M., Tanaka Y., Banaigs B. & Nakamura Y. (2017). Habitat selection by marine larvae in changing chemical environ-ments. Marine Pollution Bulletin 114 (1): 210–217. https://doi.org/10.1016/j.marpolbul.2016.08.083
Lecchini D., Bertucci F., Brooker R.M., Berthe C., Gasc J., Jossinet F., Ellacott S., Zipper E., Blay G., Schneider D., Sturny V. & Bambridge T. (2020). Rapid localized decline of a French Polynesian coral reef following a climatic irregularity. Estuarine, Coastal and Shelf Science 246: e107049. https://doi.org/10.1016/j.ecss.2020.107049
Lefcheck J.S., Hughes B.B., Johnson A.J., Pfirrmann B.W., Rasher D.B., Smyth A.R., Williams B.L., Beck M.W. & Orth R.J. (2019). Are coastal habitats important nurseries? A meta-analysis. Conservation Letters 12: e12645. https://doi.org/10.1111/conl.12645
Love M.S., Nishimoto M., Clark S. & Schroeder D.M. (2012). Recruitment of young-of-the-year fishes to natural and artificial offshore structure within Central and Southern California waters, 2008– 2010. Bulletin of Marine Sciences 88 (4): 863–992. https://doi.org/10.5343/bms.2011.1101
Madi-Moussa R., Bertucci F., Jorissen H., Gache C., Waqalevu V.P., Parravicini V., Lecchini D. & Galzin R. (2020). Importance of intertidal seagrass beds as nursery area for coral reef fish juveniles (Mayotte, Indian Ocean). Regional Studies in Marine Science 33: 100965. https://doi.org/10.1016/j.rsma.2019.100965
Mellin C., Kulbicki M. & Ponton D. (2007). Seasonal and ontogenetic patterns of habitat use in coral reef fish juveniles.Estuarine, Coastal and Shelf Science 75: 481–491. https://doi.org/10.1016/j.ecss.2007.05.026
Mercader M., Mercière A., Saragoni G., Cheminée A., Crec’hriou R., Pastor J., Ryder M., Dubas R., Lecaillon G., Boissery P. & Lenfant P. (2017). Small artificial habitats to enhance the nursery function for juvenile fish in a large commercial port of the Mediterranean. Ecological Engineering 105: 78–86. https://doi.org/10.1016/j.ecoleng.2017.03.022
Montgomery J.C., Tolimieri N. & Haine O.S. (2001). Active habitat selection by pre-settlement reef fishes. Fish and Fisheries 2 (3): 261–277. https://doi.org/10.1046/j.1467-2960.2001.00053.x
Morris R.L., Porter A.G., Figueira W.F., Coleman R.A., Fobert E.K. & Ferrari R. (2018). Fish-smart seawalls: a decision tool for adaptive management of marine infrastructure. Frontiers in Ecology and the Environment 16 (5): 278–287. https://doi.org/10.1002/fee.1809
Munsch S.H., Cordell J.R., Toft J.D. & Morgan E.E. (2014). Effects of seawalls and piers on fish assemblages and juvenile salmon feeding behavior. North American Journal of Fisheries Management 34 (4): 814–827. https://doi.org/10.1080/02755947.2014.910579
Munsch S.H, Cordell J.R. & Toft J.D. (2017). Effects of shoreline armouring and overwater structures on coastal and estuarine fish: opportunities for habitat improvement. Journal of Applied Ecology 54 (5): 1373–1384. https://doi.org/10.1111/1365-2664.12906
Nagelkerken I. (2007). Are non-estuarine mangroves connected to coral reefs through fish migration? Bulletin of Marine Science 80: 595–607.
Nagelkerken I. (2009). Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: patterns and underlying mechanisms. In: Nagelkerken I. (ed.) Ecological Connectivity among Tropical Coastal Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2406-0_10
Pirazzoli P., Brousse R., Delibrias G., Montaggioni L., Faure G. & Salvat B. (1985). Leeward islands, Maupiti, Tupai, Bora Bora, Huahine, Society archipelago. In: Proceedings of the 5th International Coral Reef Congress, Tahiti, France, 27 May–1 June 1985. Volume 1.
Siu G., Bacchet P., Bernardi G., Brooks A.J., Carlot J., Causse R., Claudet J., Clua E., Delrieu-Trottin E., Espiau B., Hermelin-Vivien M., Keith P., Madi Moussa R., Parravicini V., Planes S., Ponsonnet C., Randall J.E., Sasal P., Taquet M., Williams J.T. & Galzin R. (2017). Fishes of French Polynesia. Cybium 41: 245–278.
Thollot P. (1992). Importance of mangroves for Pacific reef fish species, myth or reality? Proceedings of the 6th International Coral Reef Symposium 2: 934–941
Ushiama S., Mayer-Pinto M., Bugnot A.B., Johnston E.L. & Dafforn K.A. (2019). Eco-engineering increases habitat availability and utilisation of seawalls by fish. Ecological Engineering 138: 403–411. https://doi.org/10.1016/j.ecoleng.2019.07.022
Verweij M.C., Nagelkerken I., de Graaff D., Peeters M., Bakker E.J. & van der Velde G. (2006). Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Marine Ecology Progress Series 306: 257–268. https://doi.org/10.3354/meps306257
Whitfield A.K. (2017). The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries 27: 75–110. https://doi.org/10.1007/s11160-016-9454-x
Williams A.B. (1955). A survey of North Carolina shrimp nursery grounds. Journal of the Mitchell Society 71: 200–207
Williams B.A., Watson J.E., Beyer H.L., Klein C.J., Montgomery J., Runting R.K., Roberson L.A., Halpern B.S., Grantham H.S., Kuempel C.D. & Frazier M. (2022). Global rarity of intact coastal regions. Conservation Biology 36 (4): e13874. https://doi.org/10.1111/cobi.13874