glaciers; Greenland; ice discharge; ice loss; land uplift; surface mass balance; Dynamic thinning; Elastic displacements; Estimate dynamics; Global Navigation Satellite Systems; Ice discharges; Short term; Solid earth; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] We present a novel method to estimate dynamic ice loss of Greenland's three largest outlet glaciers: Jakobshavn Isbræ, Kangerlussuaq Glacier, and Helheim Glacier. We use Global Navigation Satellite System (GNSS) stations attached to bedrock to measure elastic displacements of the solid Earth caused by dynamic thinning near the glacier terminus. When we compare our results with discharge, we find a time lag between glacier speedup/slowdown and onset of dynamic thinning/thickening. Our results show that dynamic thinning/thickening on Jakobshavn Isbræ occurs 0.87 ± 0.07 years before speedup/slowdown. This implies that using GNSS time series we are able to predict speedup/slowdown of Jakobshavn Isbræ by up to 10.4 months. For Kangerlussuaq Glacier the lag between thinning/thickening and speedup/slowdown is 0.37 ± 0.17 years (4.4 months). Our methodology and results could be important for studies that attempt to model and understand mechanisms controlling short-term dynamic fluctuations of outlet glaciers in Greenland.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Hansen, Karina ; DTU Space, Technical University of Denmark, Kongens Lyngby, Denmark
Truffer, Martin ; Geophysical Institute, University of Alaska Fairbanks, Fairbanks, United States
Aschwanden, Andy ; Geophysical Institute, University of Alaska Fairbanks, Fairbanks, United States ; Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Mankoff, Kenneth ; Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Bevis, Michael ; School of Earth Sciences, Ohio State University, Colombus, United States
Humbert, Angelika ; Alfred-Wegener-Institut Helmholtz Zentrum für Polar- und Meeresforschung, Germany and University of Bremen, Bremerhaven, Germany
van den Broeke, Michiel R. ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Bjørk, Anders; Department of Geosciences and Natural Resources, University of Copenhagen, Copenhagen, Denmark
Colgan, William ; Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Kjær, Kurt H.; Centre for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
Adhikari, Surendra ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Barletta, Valentina; DTU Space, Technical University of Denmark, Kongens Lyngby, Denmark
Khan, Shfaqat A. ; DTU Space, Technical University of Denmark, Kongens Lyngby, Denmark
Adhikari, S., Ivins, E. R., & Larour, E. (2017). Mass transport waves amplified by intense Greenland melt and detected in solid Earth deformation. Geophysical Research Letters, 44(10), 4965–4975. https://doi.org/10.1002/2017gl073478
Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109–6131. https://doi.org/10.1002/2016jb013098
Bamber, J. L., Westaway, R. M., Marzeion, B., & Wouters, B. (2018). The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13(6), 063008. https://doi.org/10.1088/1748-9326/aac2f0
Barletta, V. R., Sørensen, L. S., & Forsberg, R. (2013). Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere, 7(5), 1411–1432. https://doi.org/10.5194/tc-7-1411-2013
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., et al. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3), 469–489. https://doi.org/10.1016/j.asr.2020.04.015
Bevis, M., Harig, C., Khan, S. A., Brown, A., Simons, F. J., Willis, M., et al. (2019). Accelerating changes in ice mass within Greenland, and the ice sheet's sensitivity to atmospheric forcing. Proceedings of the National Academy of Sciences, 116(6), 1934–1939. https://doi.org/10.1073/pnas.1806562116
Bevis, M., Wahr, J., Khan, S. A., Madsen, F. B., Brown, A., Willis, M., et al. (2012). Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proceedings of the National Academy of Sciences, 109(30), 1944–11948. https://doi.org/10.1073/pnas.1204664109
Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Center for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth, 111(B2). B02406. https://doi.org/10.1029/2005jb003629
Bondzio, J. H., Morlighem, M., Seroussi, H., Kleiner, T., Rückamp, M., Mouginot, J., et al. (2017). The mechanisms behind Jakobshavn Isbræ's acceleration and mass loss: A 3-D thermomechanical model study. Geophysical Research Letters, 44, 6252–6260. https://doi.org/10.1002/2017GL073309
Carrère, L., Lyard, F., Cancet, M., Guillot, A., & Picot, N. (2016). FES 2014, a new tidal model—Validation results and perspectives for improvements. In Proceedings of the ESA living planet symposium (pp. 9–13).
Chen, J. L., Wilson, C. R., & Tapley, B. D. (2006). Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313(5795), 1958–1960. https://doi.org/10.1126/science.1129007
Christmann, J., Müller, R., & Humbert, A. (2019). On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves. Journal of Glaciology, 65, 1–224. https://doi.org/10.1017/jog.2018.107
Helm, V., Humbert, A., & Miller, H. (2014). Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4), 1539–1559. https://doi.org/10.5194/tc-8-1539-2014
Joughin, I., Smith, B. E., & Howat, I. M. (2018). A complete map of Greenland ice velocity derived from satellite data collected over 20 years. Journal of Glaciology, 64(243), 1–11. https://doi.org/10.1017/jog.2017.73
Khan, S. A., Bjørk, A. A., Bamber, J. L., Morlighem, M., Bevis, M., Kjær, K. H., et al. (2020). Centennial response of Greenland's three largest outlet glaciers. Nature Communications, 11, 5718. https://doi.org/10.1038/s41467-020-19580-5
Khan, S. A., Kjær, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., et al. (2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change, 4(4), 292–299. https://doi.org/10.1038/nclimate2161
Khan, S. A., Kjeldsen, K. K., Kjær, K. H., Bevan, S., Luckman, A., Aschwanden, A., et al. (2014). Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age. The Cryosphere, 8, 1497–1507. https://doi.org/10.5194/tc-8-1497-2014
Khan, S. A., Liu, L., Wahr, J., Howat, I., Joughin, I., van Dam, T., & Fleming, K. (2010). GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss. Journal of Geophysical Research, 115, B09405. https://doi.org/10.1029/2010jb007490
Khan, S. A., Sasgen, I., Bevis, M., van Dam, T., Bamber, J. L., Wahr, J., et al. (2016). Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2, e1600931. https://doi.org/10.1126/sciadv.1600931
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori, I., et al. (2019). Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geoscience, 12(4), 277–283. https://doi.org/10.1038/s41561-019-0329-3
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël, B. P. Y., et al. (2020). Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Communications Earth & Environment, 1, 1. https://doi.org/10.1038/s43247-020-0001-2
Mankoff, K. D., Solgaard, A., Colgan, W., Ahlstrøm, A. P., Khan, S. A., & Fausto, R. S. (2020). Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth System Science Data, 12(2), 1367–1383. https://doi.org/10.5194/essd-12-1367-2020
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2017). BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation. Geophysical Research Letters, 44, 11051–11061. https://doi.org/10.1002/2017gl074954
Mouginot, J., Rignot, E., Bjørk, A. A., Van den Broeke, M., Millan, R., Morlighem, M., et al. (2019). Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences, 116(19), 9239–9244. https://doi.org/10.1073/pnas.1904242116
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., et al. (2012). The extreme melt across the Greenland ice sheet in 2012. Geophysical Research Letters, 39(20). L20502. https://doi.org/10.1029/2012gl053611
Noël, B., van de Berg, W. J., Lhermitte, S., & van den Broeke, M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 5(9), eaaw0123. https://doi.org/10.1126/sciadv.aaw0123
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2018). Modeling the climate and surface mass balance of polar ice sheets using RACMO2-Part 1: Greenland (1958–2016). The Cryosphere, 12, 811–831. https://doi.org/10.5194/tc-12-811-2018
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., & Edwards, L. A. (2009). Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971–975. https://doi.org/10.1038/nature08471
Rankl, M., Fürst, J. J., Humbert, A., & Braun, M. H. (2017). Dynamic changes on the Wilkins ice shelf during the 2006–2009 retreat derived from satellite observations. The Cryosphere, 11, 1199–1211. https://doi.org/10.5194/tc-11-1199-2017
Rignot, E., & Kanagaratnam, P. (2006). Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5763), 986–990. https://doi.org/10.1126/science.1121381
Sasgen, I., Wouters, B., Gardner, A. S., King, M. D., Tedesco, M., Landerer, F. W., et al. (2020). Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Communications Earth & Environment, 1(1), 1–8. https://doi.org/10.1038/s43247-020-0010-1
Schenk, T., Csatho, B., Van Der Veen, C., & McCormick, D. (2014). Fusion of multi-sensor surface elevation data for improved characterization of rapidly changing outlet glaciers in Greenland. Remote Sensing of Environment, 149, 239–251. https://doi.org/10.1016/j.rse.2014.04.005
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van Den Broeke, M., Velicogna, I., et al. (2020). Mass balance of the Greenland ice sheet from 1992 to 2018. Nature, 579(7798), 233–239. https://doi.org/10.1038/s41586-019-1855-2
Smith, B., Fricker, H. A., Gardner, A., Siegfried, M. R., Adusumilli, S.,Csathó, B. M., et al. (2020). ATLAS/ICESat-2 L3A land ice height, version 3. [2018–2020]. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL06.003
Solgaard, A., Kusk, A., Boncori, J. P. M., Dall, J., Mankoff, K. D., Ahlstrøm, A. P., et al. (2021). Greenland ice velocity maps from the PROMICE project. Earth System Science Data Discussions, 1–29.
Studinger, M. (2014). IceBridge ATM L2 Icessn elevation, slope, and roughness, version 2. [2011–2019]. NASA National Snow and Ice Data Center Distributed Active Archive Center. Updated 2020. https://doi.org/10.5067/CPRXXK3F39RV
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., et al. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946. https://doi.org/10.5194/tc-10-1933-2016
Velicogna, I., & Wahr, J. (2006). Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768), 1754–1756. https://doi.org/10.1126/science.1123785
Wahr, J., Khan, S. A., van Dam, T., Liu, L., van Angelen, J. H., van den Broeke, M. R., & Meertens, C. M. (2013). The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland. Journal of Geophysical Research: Solid Earth, 118, 1795–1806. https://doi.org/10.1002/jgrb.50104
Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., & Gao, P. (2012). Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from crust 2.0. Computers & Geosciences, 49, 190–199. https://doi.org/10.1016/j.cageo.2012.06.022