[en] We calibrate the calving parameterisation implemented in the Open Global Glacier Model via two methods (velocity constraint and surface mass balance (SMB) constraint) and assess the impact of accounting for frontal ablation on the ice volume estimate of Greenland tidewater peripheral glaciers (PGs). We estimate an average regional frontal ablation flux of 7.38±3.45 Gta-1 after calibrating the model with two different satellite velocity products, and of 0.69±0.49 Gta-1 if the model is constrained using frontal ablation fluxes derived from independent modelled SMB averaged over an equilibrium reference period (1961-90). This second method makes the assumption that most PGs during that time have an equilibrium between mass gain via SMB and mass loss via frontal ablation. This assumption serves as a basis to assess the order of magnitude of dynamic mass loss of glaciers when compared to the SMB imbalance. The differences between results from both methods indicate how strong the dynamic imbalance might have been for PGs during that reference period. Including frontal ablation increases the estimated regional ice volume of PGs, from 14.47 to 14.64±0.12 mm sea level equivalent when using the SMB method and to 15.84±0.32 mm sea level equivalent when using the velocity method.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Recinos, Beatriz ; National Oceanography Centre, Southampton, United Kingdom ; Institute of Geography, Climate Lab, University of Bremen, Bremen, Germany ; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Maussion, Fabien; Department of Atmospheric and Cryospheric Sciences, Universität Innsbruck, Innsbruck, Austria
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Möller, Marco ; Institute of Geography, Climate Lab, University of Bremen, Bremen, Germany ; Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Marzeion, Ben; Institute of Geography, Climate Lab, University of Bremen, Bremen, Germany ; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Language :
English
Title :
Calibration of a frontal ablation parameterisation applied to Greenland's peripheral calving glaciers
Bassis JN and Walker CC (2012) Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468 (2140), 913-931. doi: 10.1098/rspa.2011.0422.
Benn DI, Warren CR and Mottram RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Science Reviews 82 (3), 143-179. doi: 10.1016/j.earscirev.2007.02.002.
Bjork AA and 13 others (2018) Changes in Greenland's peripheral glaciers linked to the North Atlantic Oscillation. Nature Climate Change 8 (1), 48-52. doi: 10.1038/s41558-017-0029-1.
Bolch T and 6 others (2013) Mass loss of Greenland's glaciers and ice caps 2003-2008 revealed from ICES at laser altimetry data. Geophysical Research Letters 40 (5), 875-881. doi: 10.1002/grl.50270.
Budd WF, Keage PL and Blundy NA (1979) Empirical studies of ice sliding. Journal of Glaciology 23 (89), 157-170. doi: 10.1017/S0022143000029804.
Carr J and 9 others (2015) Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland. Journal of Glaciology 61 (225), 137-150. doi: 10.3189/2015JoG14J128.
Carr JR, Stokes C and Vieli A (2014) Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. Journal of Glaciology 60 (219), 155-170. doi: 10.3189/2014JoG13J122.
Colgan W and 7 others (2015) Greenland high-elevation mass balance: inference and implication of reference period (1961-90) imbalance. Annals of Glaciology 56 (70), 105-117. doi: 10.3189/2015AoG70A967.
Cowton TR, Sole AJ, Nienow PW, Slater DA and Christoffersen P (2018) Linear response of east Greenland's tidewater glaciers to ocean/atmosphere warming. Proceedings of the National Academy of Sciences 115 (31), 7907-7912. doi: 10.1073/pnas.1801769115.
Cuffey K and Paterson W (2010) The Physics of Glaciers, 4th Edn. Amsterdam, etc., Academic Press.
Enderlin EM, Howat IM and Vieli A (2013) High sensitivity of tidewater outlet glacier dynamics to shape. The Cryosphere 7 (3), 1007-1015. doi: 10.5194/tc-7-1007-2013.
Farinotti D and 36 others (2017) How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. The Cryosphere 11 (2), 949-970. doi: 10.5194/tc-11-949-2017.
Farinotti D and 6 others (2019) A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience 12, 168-173. doi: 10.1038/s41561-019-0300-3.
Farinotti D, Huss M, Bauder A, Funk M and Truffer M (2009) A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology 55 (191), 422-430. doi: 10.3189/002214309788816759.
Fettweis X and 8 others (2017) Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere 11 (2), 1015-1033. doi: 10.5194/tc-11-1015-2017.
Frey H and 9 others (2014) Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. The Cryosphere 8 (6), 2313-2333. doi: 10.5194/tc-8-2313-2014.
Gardner AS, Fahnestock MA and Scambos TA (2019) ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities. Data archived at National Snow and Ice Data Center. doi: 10.5067/6II6VW8LLWJ7, accessed: May 28, 2021.
Harris I, Jones P, Osborn T and Lister D (2014) Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. International Journal of Climatology 34 (3), 623-642. doi: 10.1002/joc.3711.
Howat IM, Negrete A and Smith BE (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8 (4), 1509-1518. doi: 10.5194/tc-8-1509-2014.
Huss M and Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface 117 (F04010) doi. 10.1029/2012JF002523.
Huss M and Hock R (2015) A new model for global glacier change and sea-level rise. Frontiers in Earth Science 3, 54. doi: 10.3389/feart.2015.00054.
Hutter K (1981) The effect of longitudinal strain on the shear stress of an ice sheet: in defence of using stretched coordinates. Journal of Glaciology 27 (95), 39-56. doi: 10.3189/S0022143000011217.
Hutter K (1983) Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets. Netherlands: Springer Netherlands.
Jamieson SSR, Vieli A, Livingstone SJ, Cofaigh CÓ, Stokes C, Hillenbrand CD and Dowdeswell JA (2012) Ice-stream stability on a reverse bed slope. Nature Geoscience 5 (11), 799-802. doi: 10.1038/ngeo1600.
Joughin I, Smith B, Howat I and Scambos T (2016) MEaSUREs Multi-year Greenland Ice Sheet Velocity Mosaic, Version 1. Boulder, Colorado, USA. NASA National Snow and Ice Data Center Distributed Active Archive Center (doi: 10.5067/QUA5Q9SVMSJG), accessed: May 28, 2021.
Kienholz C, Rich JL, Arendt AA and Hock R (2014) A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. The Cryosphere 8 (2), 503-519. doi: 10.5194/tc-8-503-2014.
King MD and 6 others (2018) Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. The Cryosphere 12 (12), 3813-3825. doi: 10.5194/tc-12-3813-2018.
King MD and 8 others (2020) Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Communications Earth & Environment 1 (1), 1. doi: 10.1038/s43247-020-0001-2.
Ma Y, Tripathy CS and Bassis JN (2017) Bounds on the calving cliff height of marine terminating glaciers. Geophysical Research Letters 44 (3), 1369-1375. doi: 10.1002/2016GL071560.
Machguth H and 8 others (2013) The future sea-level rise contribution of Greenland's glaciers and ice caps. Environmental Research Letters 8 (2), 025005. doi: 10.1088/1748-9326/8/2/025005.
Mankoff KD and 10 others (2019) Greenland Ice Sheet solid ice discharge from 1986 through 2017. Earth System Science Data 11 (2), 769-786. doi: 10.5194/essd-11-769-2019.
Marzeion B and 16 others (2020) Partitioning the uncertainty of ensemble projections of global glacier mass change. Earth's Future 8 (7) e2019EF001470. doi: 10.1029/2019EF001470.
Marzeion B, Jarosch AH and Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere 6 (6), 1295-1322. doi: 10.5194/tc-6-1295-2012.
Maussion F and 14 others (2019) The Open Global Glacier Model (OGGM) v1.1. Geoscientific Model Development 12 (3), 909-931. doi: 10.5194/gmd-12-909-2019.
Mouginot J and 8 others (2019) Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences 116 (19), 9239-9244. doi: 10.1073/pnas.1904242116.
New M, Lister D, Hulme M and Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Research 21 (1), 1-25. doi: 10.3354/cr021001.
Noël B and 6 others (2016) A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015). The Cryosphere 10 (5), 2361-2377. doi: 10.5194/tc-10-2361-2016.
Noël B and 9 others (2017) A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Communications 8 (1), 14730. doi: 10.1038/ncomms14730.
Noël B and 11 others (2018) Modelling the climate and surface mass balance of polar ice sheets using RACMO2-part 1: Greenland (1958-2016). The Cryosphere 12 (3), 811-831. doi: 10.5194/tc-12-811-2018.
Noël B, van de Berg WJ, Lhermitte S, van den Broeke MR (2019) Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances 5 (9), EAAW0123. doi: 10.1126/sciadv.aaw0123.
Oerlemans J (1997) A flowline model for Nigardsbreen, Norway: projection of future glacier length based on dynamic calibration with the historic record. Annals of Glaciology 24, 382-389. doi: 10.3189/S0260305500012489.
Oerlemans J and Nick F (2005) A minimal model of a tidewater glacier. Annals of Glaciology 42, 1-6. doi: 10.3189/172756405781813023.
Pfeffer WT and 9 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology 60 (221), 537-552. doi: 10.3189/2014JoG13J176.
Porter C and 28 others (2018) ArcticDEM Harvard Dataverse, V1. doi: 10.7910/DVN/OHHUKH.
Rastner P and 5 others (2012) The first complete inventory of the local glaciers and ice caps on Greenland. The Cryosphere 6 (6), 1483-1495. doi: 10.5194/tc-6-1483-2012.
Recinos B, Maussion F, Rothenpieler T and Marzeion B (2019) Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska. The Cryosphere 13 (10), 2657-2672. doi: 10.5194/tc-13-2657-2019.
Rignot E and Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311 (5763), 986-990. doi: 10.1126/science.1121381.
Shepherd A and 88 others (2020) Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579 (7798), 233-239. doi: 10.1038/s41586-019-1855-2.
Virtanen P and 33 others (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261-272. doi: 10.1038/s41592-019-0686-2.
WGMS (2017) Fluctuations of Glaciers Database. World Glacier Monitoring Service, Zurich, Switzerland. doi: 10.5904/wgms-fog-2017-10.