CESM2; future; Greenland; regional climate model; surface mass balance; Atmospheric warming; Earth system model; Emissions scenarios; Greenland Ice Sheet; Pre-industrial; Sea level rise; Surface mass balance; Temperature changes; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Under anticipated future warming, the Greenland ice sheet (GrIS) will pass a threshold when meltwater runoff exceeds the accumulation of snow, resulting in a negative surface mass balance (SMB < 0) and sustained mass loss. Here, we dynamically and statistically downscale the outputs of an Earth system model to 1 km resolution to infer that a Greenland near-surface atmospheric warming of 4.5 ± 0.3°C—relative to preindustrial—is required for GrIS SMB to become persistently negative. Climate models from CMIP5 and CMIP6 translate this regional temperature change to a global warming threshold of 2.7 ± 0.2°C. Under a high-end warming scenario, this threshold may be reached around 2055, while for a strong mitigation scenario it will likely not be passed. Depending on the emissions scenario taken, our method estimates 6–13 cm sea level rise from GrIS SMB by the year 2100.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
van Kampenhout, L. ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Lenaerts, J.T.M. ; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
van de Berg, W.J. ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
van den Broeke, M.R. ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss
NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek NESSC - Netherlands Earth System Science Centre NASA - National Aeronautics and Space Administration
Funding text :
B. Noël was funded by the NWO VENI grant VI.Veni.192.019. L. van Kampenhout, W. J. van de Berg, and M. R. van den Broeke acknowledge funding from the Netherlands Earth System Science Centre (NESSC). This publication was supported by PROTECT. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869304, PROTECT contribution number 11. J. T. M. Lenaerts acknowledges funding from the National Aeronautics and Space Administration (NASA), Grant 80NSSC17K0565 (NASA Sea Level Team 2017–2020).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., et al. (2019). Contribution of the Greenland Ice Sheet to sea level over the next millennium. Science Advances, 5(6), eaav9396. https://doi.org/10.1126/sciadv.aav9396
Bamber, J. L., Westaway, R. M., Marzeion, B., & Wouters, B. (2018). The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13(6), 063008. https://doi.org/10.1088/1748-9326/aac2f0
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., & Steffen, K. (2012). Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. The Cryosphere, 6(4), 821–839. https://doi.org/10.5194/tc-6-821-2012
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., et al. (2017). Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surveys in Geophysics, 38(1), 309–327. https://doi.org/10.1007/s10712-016-9381-3
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et al. (2020). The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001916. https://doi.org/10.1029/2019MS001916
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
Edwards, T. L., Fettweis, X., Gagliardini, O., Gillet-Chaulet, F., Goelzer, H., Gregory, J. M., et al. (2014). Effect of uncertainty in surface mass balance--elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. The Cryosphere, 8, 195–208.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., & Gallée, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7(2), 469–489. https://doi.org/10.5194/tc-7-469-2013
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., et al. (2020). GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. The Cryosphere, 14(11), 3935–3958. https://doi.org/10.5194/tc-14-3935-2020
Forster, R. R., Box, J. E., van den Broeke, M. R., Miège, C., Burgess, E. W., van Angelen, J. H., et al. (2013). Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience, 7(2), 95–98. https://doi.org/10.1038/ngeo2043
Frieler, K., Meinshausen, M., Mengel, M., Braun, N., & Hare, W. (2011). A scaling approach to probabilistic assessment of regional climate change. Journal of Climate, 25(9), 3117–3144. https://doi.org/10.1175/JCLI-D-11-00199.1
Gregory, J. m, & Huybrechts, P. (2006). Ice-sheet contributions to future sea-level change. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 364(1844), 1709–1732. https://doi.org/10.1098/rsta.2006.1796
Hanna, E., Mernild, S. H., Cappelen, J., & Steffen, K. (2012). Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environmental Research Letters, 7(4), 045404. https://doi.org/10.1088/1748-9326/7/4/045404
Hanna, E., Pattyn, F., Navarro, F., Favier, V., Goelzer, H., van den Broeke, M. R., et al. (2020). Mass balance of the ice sheets and glaciers – Progress since AR5 and challenges. Earth-Science Reviews, 201, 102976. https://doi.org/10.1016/j.earscirev.2019.102976
Huybrechts, P., Letreguilly, A., & Reeh, N. (1991). The Greenland ice sheet and greenhouse warming. Global and Planetary Change, 3(4), 399–412. https://doi.org/10.1016/0921-8181(91)90119-H
IMBIE Team. (2020). Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579(7798), 233–239. https://doi.org/10.1038/s41586-019-1855-2
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël, B. P. Y., et al. (2020). Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Communications Earth & Environment, 1(1), 1. https://doi.org/10.1038/s43247-020-0001-2
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E., Funder, S., et al. (2015). Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 528(7582), 396–400. https://doi.org/10.1038/nature16183
Le clec'h, S., Charbit, S., Quiquet, A., Fettweis, X., Dumas, C., Kageyama, M., et al. (2019). Assessment of the Greenland ice sheet--atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model. The Cryosphere, 13(1), 373–395. https://doi.org/10.5194/tc-13-373-2019
MacFerrin, M., Machguth, H., van As, D., Charalampidis, C., Stevens, C. M., Heilig, A., et al. (2019). Rapid expansion of Greenland's low-permeability ice slabs. Nature, 573(7774), 403–407. https://doi.org/10.1038/s41586-019-1550-3
Machguth, H., MacFerrin, M., van As, D., Box, J. E., Charalampidis, C., Colgan, W., et al. (2016). Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change, 6(4), 390–393. https://doi.org/10.1038/nclimate2899
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2017). BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 44(21), 11051–11061. https://doi.org/10.1002/2017GL074954
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., et al. (2019). Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences, 116(19), 9239–9244. https://doi.org/10.1073/pnas.1904242116
Noël, B., van de Berg, W. J., Lhermitte, S., & van den Broeke, M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 5(9), eaaw0123. https://doi.org/10.1126/sciadv.aaw0123
Noël, B., van Kampenhout, L., van de Berg, W. J., Lenaerts, J. T. M., Wouters, B., & van den Broeke, M. R. (2020). Brief communication: CESM2 climate forcing (1950–2014) yields realistic Greenland ice sheet surface mass balance. The Cryosphere, 14(4), 1425–1435. https://doi.org/10.5194/tc-14-1425-2020
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016). The Cryosphere, 12(3), 811–831. https://doi.org/10.5194/tc-12-811-2018
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., et al. (2019). Sea level rise and implications for low-lying islands, coasts and communities. IPCC Special Report on “The Oceans and Cryosphere in a Changing Climate” (SROCC), p. 126.
Rae, J. G. L., Aðalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory, J. M., Hewitt, H. T., et al. (2012). Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models. The Cryosphere, 6(6), 1275–1294. https://doi.org/10.5194/tc-6-1275-2012
Robinson, A., Calov, R., & Ganopolski, A. (2012). Multistability and critical thresholds of the Greenland ice sheet. Nature Climate Change, 2(6), 429–432. https://doi.org/10.1038/nclimate1449
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2011). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Tedesco, M., & Fettweis, X. (2020). Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet. The Cryosphere, 14(4), 1209–1223. https://doi.org/10.5194/tc-14-1209-2020
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., et al. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131(612), 2961–3012. https://doi.org/10.1256/qj.04.176
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., et al. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10(5), 1933–1946. https://doi.org/10.5194/tc-10-1933-2016
van Kampenhout, L., Lenaerts, J. T. M., Lipscomb, W. H., Lhermitte, S., Noël, B., Vizcaíno, M., et al. (2020). Present-Day Greenland Ice Sheet Climate and Surface Mass Balance in CESM2. Journal of Geophysical Research: Earth Surface, 125(2), e2019JF005318. https://doi.org/10.1029/2019JF005318
van Kampenhout, L., Rhoades, A. M., Herrington, A. R., Zarzycki, C. M., Lenaerts, J. T. M., Sacks, W. J., & Broeke, M. R. van den (2019). Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance. The Cryosphere, 13(6), 1547–1564. https://doi.org/10.5194/tc-13-1547-2019
Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M., & Sasgen, I. (2013). Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geoscience, 6(8), 613. https://doi.org/10.1038/ngeo1874
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., et al. (2020). Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47(1), e2019GL085782. https://doi.org/10.1029/2019GL085782
Dang, C., Zender, C. S., & Flanner, M. G. (2019). Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces. The Cryosphere, 13(9), 2325–2343. https://doi.org/10.5194/tc-13-2325-2019
Howat, I. M., Negrete, A., & Smith, B. E. (2014). The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. The Cryosphere, 8(4), 1509–1518. https://doi.org/10.5194/tc-8-1509-2014
van Kampenhout, L., Lenaerts, J. T. M., Lipscomb, W. H., Sacks, W. J., Lawrence, D. M., Slater, A. G., & van den Broeke, M. R. (2017). Improving the Representation of Polar Snow and Firn in the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 9(7), 2583–2600. https://doi.org/10.1002/2017MS000988
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.