[en] The retreat and acceleration of Greenland glaciers since the mid-1990s have been attributed to the enhanced intrusion of warm Atlantic Waters (AW) into fjords, but this assertion has not been quantitatively tested on a Greenland-wide basis or included in models. Here, we investigate how AW influenced retreat at 226 marine-terminating glaciers using ocean modeling, remote sensing, and in situ observations. We identify 74 glaciers in deep fjords with AW controlling 49% of the mass loss that retreated when warming increased undercutting by 48%. Conversely, 27 glaciers calving on shallow ridges and 24 in cold, shallow waters retreated little, contributing 15% of the loss, while 10 glaciers retreated substantially following the collapse of several ice shelves. The retreat mechanisms remain undiagnosed at 87 glaciers without ocean and bathymetry data, which controlled 19% of the loss. Ice sheet projections that exclude ocean-induced undercutting may underestimate mass loss by at least a factor of 2.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Wood, Michael ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA. mhwood@uci.edu ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Rignot, Eric ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Fenty, Ian ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
An, Lu ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
Bjørk, Anders ; Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
van den Broeke, Michiel ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Cai, Cilan ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
Kane, Emily ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
Menemenlis, Dimitris ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Millan, Romain ; University of Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Morlighem, Mathieu ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
Mouginot, Jeremie ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA ; University of Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Scheuchl, Bernd ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
Velicogna, Isabella ; Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Willis, Josh K ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Zhang, Hong; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
NSF - National Science Foundation Jet Propulsion Laboratory NESSC - Netherlands Earth System Science Centre NWO - Netherlands Organisation for Scientific Research ANR - French National Research Agency NASA - National Aeronautics and Space Administration
Funding text :
This project was conducted at the University of California Irvine as part of NASA’s OMG Mission and at the Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. M.W. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by the Universities Space Research Association under contract with NASA. ECCO (281945.02.25.03.49) was supported by the NASA Physical Oceanography; Modelling, Analysis, and Prediction; and Cryosphere Programs. M.v.d.B. acknowledges support from the Netherlands Earth System Science Centre (NESSC). B.N. was funded by the Netherlands Organisation for Scientific Research (NWO) VENI grant VI.Veni.192.019. J.M. and R.M. acknowledge support from the French National Research Agency (ANR) grant (ANR-19-CE01-0011-01). M.M. was supported by the National Science Foundation’s ARCSS program (no. 1504230). J.K.W. acknowledges support from the NASA/JPL OMG (87-19754). Copyright: 2020. All rights reserved.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J. Mouginot, E. Rignot, A. A. Bjørk, M. van den Broeke, R. Millan, M. Morlighem, B. Noël, B. Scheuchl, M. Wood, Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. U.S.A. 116, 9239–9244 (2019).
D. M. Holland, R. H. Thomas, B. de Young, M. H. Ribergaard, B. Lyberth, Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659–664 (2008).
E. Rignot, I. Fenty, D. Menemenlis, Y. Xu, Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann. Glaciol. 53, 257–266 (2012).
A. Seale, P. Christoffersen, R. I. Mugford, M. O’Leary, Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf. 116, F03013 (2011).
M. Wood, E. Rignot, I. Fenty, D. Menemenlis, R. Millan, M. Morlighem, J. Mouginot, H. Seroussi, Ocean-induced melt triggers glacier retreat in northwest Greenland. Geophys. Res. Lett. 45, 8334–8342 (2018).
T. Moon, I. Joughin, Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res. Earth Surf. 113, F02022 (2008).
T. Murray, K. Scharrer, N. Selmes, A. D. Booth, T. D. James, S. L. Bevan, J. Bradley, S. Cook, L. Cordero Llana, Y. Drocourt, L. Dyke, A. Goldsack, A. L. Hughes, A. J. Luckman, J. McGovern, Extensive retreat of Greenland tidewater glaciers, 2000–2010. Arct. Antarct. Alp. Res. 47, 427–447 (2015).
I. M. Howat, I. Joughin, M. Fahnestock, B. E. Smith, T. A. Scambos, Synchronous retreat and acceleration of southeast greenland outlet glaciers 2000–06: Ice dynamics and coupling to climate. J. Glaciol. 54, 646–660 (2008).
D. Felikson, T. C. Bartholomaus, G. A. Catania, N. J. Korsgaard, K. H. Kjær, M. Morlighem, B. Noël, M. Van Den Broeke, L. A. Stearns, E. L. Shroyer, D. A. Sutherland, J. D. Nash, Inland thinning on the Greenland Ice sheet controlled by outlet glacier geometry. Nat. Geosci. 10, 366–369 (2017).
A. Vieli, F. M. Nick, Understanding and modelling rapid dynamical changes of tidewater outlet glaciers: Issues and implications. Surv. Geophys. 32, 437–458 (2011).
J. Walter, J. E. Box, S. Tulaszyk, E. Brodsky, I. M. Howat, Y. Ahn, A. Brown, Oceanic mechanical forcing of a marine-terminating Greenland glacier. Ann. Glaciol. 53, 181–192 (2012).
A. J. Tedstone, P. W. Nienow, I. D. Bartholomew, A. J. Sole, T. R. Cowton, D. W. F. Mair, I. D. Bartholomew, M. A. King, Greenland ice sheet motion insensitive to exceptional meltwater forcing. Proc. Natl. Acad. Sci. U.S.A. 110, 19719–19724 (2013).
A. Khazendar, I. G. Fenty, D. Carroll, A. Gardner, C. M. Lee, I. Fukumori, O. Wang, H. Zhang, H. Seroussi, D. Moller, B. P. Y. Noël, M. van den Broeke, S. Dinardo, J. Willis, Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nat. Geosci. 12, 277–283 (2019).
E. Rignot, M. Koppes, I. Velicogna, Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci. 3, 187–191 (2010).
M. Truffer, R. J. Motyka, Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings. Rev. Geophys. 54, 220–239 (2016).
T. R. Cowton, A. J. Sole, P. W. Nienow, D. A. Slater, P. Christoffersen, Linear response of east Greenland’s tidewater glaciers to ocean/atmosphere warming. Proc. Natl. Acad. Sci. U.S.A. 115, 7907–7912 (2018).
D. A. Slater, F. Straneo, D. Felikson, C. M. Little, H. Goelzer, X. Fettweis, J. Holte, Estimating Greenland tidewater glacier retreat driven by submarine melting. Cryosphere 13, 2489–2509 (2019).
I. Fenty, J. K. Willis, A. Khazendar, S. Dinardo, R. Forsberg, I. Fukumori, D. Holland, M. Jakobsson, D. Moller, J. Morison, A. Münchow, E. Rignot, M. Schodlock, A. F. Thompson, K. Tinto, M. Rutherford, N. Trenholm, Oceans Melting Greenland: Early results from NASA’s ocean-ice mission in Greenland. Oceanography 29, 72–83 (2016).
M. Morlighem, C. N. Williams, E. Rignot, L. An, J. E. Arndt, J. L. Bamber, G. Catania, N. Chauché, J. A. Dowdeswell, B. Dorschel, I. Fenty, K. Hogan, I. Howat, A. Hubbard, M. Jakobsson, T. M. Jordan, K. K. Kjeldsen, R. Millan, L. Mayer, J. Mouginot, B. P. Y. Noël, C. O’Cofaigh, S. Palmer, S. Rysgaard, H. Seroussi, M. J. Siegert, P. Slabon, F. Straneo, M. R. van den Broeke, W. Weinrebe, M. Wood, K. B. Zinglersen, Bedmachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017).
E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, C. Cai, L. An, B. de Fleurian, Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades. Geophys. Res. Lett. 43, 6374–6382 (2016).
Y. Xu, E. Rignot, I. Fenty, D. Menemenlis, M. M. Flexas, Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett. 40, 4648–4653 (2013).
M. J. Fried, G. A. Catania, T. C. Bartholomaus, D. Duncan, M. Davis, L. A. Stearns, J. Nash, E. Shroyer, D. Sutherland, Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett. 42, 9328–9336 (2015).
D. A. Sutherland, R. H. Jackson, C. Kienholz, J. M. Amundson, W. P. Dryer, D. Duncan, E. F. Eidam, R. J. Motyka, J. D. Nash, Direct observations of submarine melt and subsurface geometry at a tidewater glacier. Science 365, 369–374 (2019).
R. H. Jackson, E. L. Shroyer, J. D. Nash, D. A. Sutherland, D. Carroll, M. J. Fried, G. A. Catania, T. C. Bartholomaus, L. A. Stearns, Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations. Geophys. Res. Lett. 44, 6886–6894 (2017).
D. A. Slater, P. Nienow, D. Goldberg, T. Cowton, A. Sole, A model for tidewater glacier undercutting by submarine melting. Geophys. Res. Lett. 44, 2360–2368 (2017).
M. O’Leary, P. Christoffersen, Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere 7, 119–128 (2013).
N. J. Korsgaard, C. Nuth, S. A. Khan, K. K. Kjeldsen, A. A. Bjørk, A. Schomacker, K. H. Kjær, Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Sci. Data 3, 160032 (2016).
I. Howat, A. Negrete, B. Smith, The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014).
C. Porter, P. Morin, I. Howat, M.-J. Noh, B. Bates, K. Peterman, S. Keesey, M. Schlenk, J. Gardiner, K. Tomko, M. Willis, C. Kelleher, M. Cloutier, E. Husby, S. Foga, H. Nakamura, M. Platson, M. Wethington Jr., C. Williamson, G. Bauer, J. Enos, G. Arnold, W. Kramer, P. Becker, A. Doshi, C. D’Souza, P. Cummens, F. Laurier, M. Bojesen, Arcticdem. Harvard Dataverse 1, (2018).
M. Morlighem, M. Wood, H. Seroussi, Y. Choi, E. Rignot, Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. Cryosphere 13, 723–734 (2019).
D. Carroll, D. A. Sutherland, B. Hudson, T. Moon, G. A. Catania, E. L. Shroyer, J. D. Nash, T. C. Bartholomaus, D. Felikson, L. A. Stearns, B. P. Y. Noël, M. R. van den Broeke, The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 43, 9739–9748 (2016).
H. Goelzer, S. Nowicki, A. Payne, E. Larour, H. Seroussi, W. Lipscomb, J. Gregory, A. Abe-Ouchi, A. Shepherd, E. Simon, C. Agosta, P. Alexander, A. Aschwanden, A. Barthel, R. Calov, C. Chambers, Y. Choi, J. Cuzzone, C. Dumas, T. Edwards, D. Felikson, X. Fettweis, N. Golledge, R. Greve, A. Humbert, P. Huybrechts, S. Le clech, V. Lee, G. Leguy, C. Little, D. Lowry, M. Morlighem, I. Nias, A. Quiquet, M. Rückamp, N. Schlegel, D. A. Slater, R. S. Smith, F. Straneo, L. Tarasov, R. van de Wal, M. van den Broeke, The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).
D. Slater, D. Felikson, F. Straneo, H. Goelzer, C. Little, M. Morlighem, X. Fettweis, S. Nowicki, Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution. Cryosphere 14, 985–1008 (2020).
E. A. Hill, J. R. Carr, C. R. Stokes, H. Gudmundsson, Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015. Cryosphere 12, 3243–3263 (2018).
J. Mouginot, E. Rignot, B. Scheuchl, R. Millan, Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote Sens. 9, 364 (2017).
L. An, E. Rignot, R. Millan, K. Tinto, J. Willis, Bathymetry of Northwest Greenland using “Ocean Melting Greenland” (OMG) high-resolution airborne gravity and other data. Remote Sens. 11, 131 (2019).
R. Millan, E. Rignot, J. Mouginot, M. Wood, A. A. Bjørk, M. Morlighem, Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water from Operation IceBridge and Ocean Melting Greenland Data. Geophys. Res. Lett. 45, 288–2696 (2018).
B. Noël, W. J. van de Berg, S. Lhermitte, M. R. van den Broeke, Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv. 5, eaaw0123 (2019).
H. Seroussi, M. Morlighem, E. Rignot, A. Khazendar, E. Larour, J. Mouginot, Dependence of century-scale projections of the Greenland ice sheet on its thermal regime. J. Glaciol. 59, 1024–1034 (2013).
H. Zhang, D. Menemenlis, I. Fenty, ECCO LLC270 Ocean-Ice State Estimate (2018).
T. P. Boyer, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, R. A. Locarnini, A. V. Mishonov, C. R. Paver, J. R. Reagan, D. Seidov, I. V. Smolyar, K. Weathers, M. M. Zweng, World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87, (2019).
R. H. Thomas, C. R. Bentley, A model for Holocene retreat of the West Antarctic ice sheet. Quat. Res. 10, 150–170 (1978).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.