Environmental Science (all); Earth and Planetary Sciences (all); General Earth and Planetary Sciences; General Environmental Science
Abstract :
[en] The Greenland Ice Sheet is losing mass at accelerated rates in the 21st century, making it the largest single contributor to rising sea levels. Faster flow of outlet glaciers has substantially contributed to this loss, with the cause of speedup, and potential for future change, uncertain. Here we combine more than three decades of remotely sensed observational products of outlet glacier velocity, elevation, and front position changes over the full ice sheet. We compare decadal variability in discharge and calving front position and find that increased glacier discharge was due almost entirely to the retreat of glacier fronts, rather than inland ice sheet processes, with a remarkably consistent speedup of 4–5% per km of retreat across the ice sheet. We show that widespread retreat between 2000 and 2005 resulted in a step-increase in discharge and a switch to a new dynamic state of sustained mass loss that would persist even under a decline in surface melt.
Disciplines :
Earth sciences & physical geography
Author, co-author :
King, Michalea D. ; Byrd Polar and Climate Research Center & School of Earth Sciences, The Ohio State University, Columbus, United States
Howat, Ian M. ; Byrd Polar and Climate Research Center & School of Earth Sciences, The Ohio State University, Columbus, United States
Candela, Salvatore G.; Byrd Polar and Climate Research Center & School of Earth Sciences, The Ohio State University, Columbus, United States
Noh, Myoung J.; Byrd Polar and Climate Research Center & School of Earth Sciences, The Ohio State University, Columbus, United States
Jeong, Seongsu; Department of Earth System Science, University of California Irvine, Irvine, United States
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
van den Broeke, Michiel R. ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Wouters, Bert; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands ; Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
Negrete, Adelaide; Byrd Polar and Climate Research Center & School of Earth Sciences, The Ohio State University, Columbus, United States
Language :
English
Title :
Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat
NASA - National Aeronautics and Space Administration OSU - The Ohio State University NWO - Netherlands Organisation for Scientific Research
Funding text :
This project was supported by grants 80NSSC18K1027 and NNX13AI21A from the National Aeronautics and Space Administration and a Distinguished University Fellowship from the Ohio State University. B.W. was funded by NWO VIDI grant 016.Vidi.171.063. B.P.Y.N. was funded by NWO VENI grant VI.Veni.192.019. M.R.v.d.B. and B.P.Y.N. acknowledge funding from the Netherlands Earth System Science Center (NESSC).
Shepherd, A. & IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020). DOI: 10.1038/s41586-019-1855-2
van den Broeke, M. R. et al. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10, 1933–1946 (2016). DOI: 10.5194/tc-10-1933-2016
King, M. D. et al. Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. Cryosphere 12, 3813–3825 (2018). DOI: 10.5194/tc-12-3813-2018
Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. USA 116, 9239–9244 (2019). DOI: 10.1073/pnas.1904242116
Mankoff, K. D. et al. Greenland Ice Sheet solid ice discharge from 1986 through 2017. Earth Syst. Sci. Data 11, 769–786 (2019). DOI: 10.5194/essd-11-769-2019
Carr, J. R., Stokes, C. R. & Vieli, A. Threefold increase in marine-terminating outlet glacier retreat rates across the Atlantic Arctic: 1992–2010. Ann. Glaciol. 58, 1–20 (2017). DOI: 10.1017/aog.2017.3
Bevan, S. L., Luckman, A. J. & Murray, T. Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers. Cryosphere 6, 923–937 (2012). DOI: 10.5194/tc-6-923-2012
Vijay, S. et al. Resolving seasonal ice velocity of 45 Greenlandic glaciers with very high temporal details. Geophys. Res. Lett. 46, 1485–1495 (2019). DOI: 10.1029/2018GL081503
Joughin, I., Abdalati, W. & Fahnestock, M. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432, 609–610 (2004). DOI: 10.1038/nature03130
Khazendar, A. et al. Interruption of two decades of Jakobshavn Isbræ acceleration and thinning as regional ocean cools. Nat. Geosci. 12, 277–283 (2019). DOI: 10.1038/s41561-019-0329-3
Joughin, I., E. Shean, D., E. Smith, B. & Floricioiu, D. A decade of variability on Jakobshavn Isbræ: Ocean temperatures pace speed through influence on mélange rigidity. Cryosphere 14, 211–227 (2020). DOI: 10.5194/tc-14-211-2020
Howat, I. M., Joughin, I., Tulaczyk, S. & Gogineni, S. Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett. 32, L22502 (2005). DOI: 10.1029/2005GL024737
Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E. & Scambos, T. A. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000-06: ice dynamics and coupling to climate. J. Glaciol. 54, 646–660 (2008). DOI: 10.3189/002214308786570908
Brough, S., Carr, J. R., Ross, N. & Lea, J. M. Exceptional retreat of Kangerlussuaq Glacier, east Greenland, between 2016 and 2018. Front. Earth Sci. 7, 1–11 (2019). DOI: 10.3389/feart.2019.00123
Noël, B., van de Berg, W. J., Lhermitte, S. & van den Broeke, M. R. Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv. 5, 2–11 (2019). DOI: 10.1126/sciadv.aaw0123
Wouters, B., Bamber, J. L., Van Den Broeke, M. R., Lenaerts, J. T. M. & Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 6, 613–616 (2013). DOI: 10.1038/ngeo1874
Sasgen, I. et al. Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett. 333–334, 293–303 (2012). DOI: 10.1016/j.epsl.2012.03.033
van den Broeke, M. et al. Greenland Ice Sheet surface mass loss: recent developments in observation and modeling. Curr. Clim. Chang. Reports 3, 345–356 (2017). DOI: 10.1007/s40641-017-0084-8
Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci. 2, 110–114 (2009). DOI: 10.1038/ngeo394
Catania, G. A. et al. Geometric controls on tidewater glacier retreat in central western Greenland. J. Geophys. Res. Earth Surf. 123, 2024–2038 (2018). DOI: 10.1029/2017JF004499
Bunce, C., Carr, J. R., Nienow, P. W., Ross, N. & Killick, R. Ice front change of marine-terminating outlet glaciers in northwest and southeast Greenland during the 21st century. J. Glaciol 64, 523–535 (2018). DOI: 10.1017/jog.2018.44
Wood, M. et al. Ocean-induced melt triggers glacier retreat in northwest Greenland. Geophys. Res. Lett. 45, 8334–8342 (2018). DOI: 10.1029/2018GL078024
Beckmann, J. et al. Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line–plume model. Cryosphere 13, 2281–2301 (2019). DOI: 10.5194/tc-13-2281-2019
Larsen, S. H. et al. Increased mass loss and asynchronous behavior of marine-terminating outlet glaciers at Upernavik Isstrøm, NW Greenland. J. Geophys. Res. Earth Surf. 121, 241–256 (2016). DOI: 10.1002/2015JF003507
Veitch, S. A. & Nettles, M. Spatial and temporal variations in Greenland glacial-earthquake activity, 1993–2010. J. Geophys. Res. Earth Surf. 117, F04007 (2012). DOI: 10.1029/2012JF002412
Weidick, A. in Satellite Image Atlas of Glaciers of the World (eds Williams, R. S. & Ferrigno, J.) C1–C105 (US Geological Survey, Denver, CO, 1995).
Howat, I. M. et al. Mass balance of Greenland’s three largest outlet glaciers, 2000-2010. Geophys. Res. Lett. 38, 1–5 (2011). DOI: 10.1029/2011GL047565
Porter, D. F. et al. Identifying spatial variability in Greenland’s outlet glacier response to ocean heat. Front. Earth Sci. 6, 1–13 (2018). DOI: 10.3389/feart.2018.00090
Millan, R. et al. Vulnerability of Southeast Greenland glaciers to warm Atlantic water from Operation IceBridge and Ocean Melting Greenland Data. Geophys. Res. Lett. 45, 2688–2696 (2018). DOI: 10.1002/2017GL076561
Jeong, S., Howat, I. M. & Ahn, Y. Improved multiple matching method for observing glacier motion with repeat image feature tracking. IEEE Trans. Geosci. Remote Sens. 55, 2431–2441 (2017). DOI: 10.1109/TGRS.2016.2643699
Korsgaard, N. J., Nuth, C., Khan, S. A. & Kjeldsen, K. K. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Sci. Data 3, 1–15 (2016). DOI: 10.1038/sdata.2016.32
Porter, C. et al. ArcticDEM, V1 (Harvard Dataverse, 2018).
Noh, M. J. & Howat, I. M. The surface extraction from TIN based Search-space Minimization (SETSM) algorithm. ISPRS J. Photogramm. Remote Sens. 129, 55–76 (2017). DOI: 10.1016/j.isprsjprs.2017.04.019
Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017). DOI: 10.1002/2017GL074954
Walsh, K. M., Howat, I. M., Ahn, Y. & Enderlin, E. M. Changes in the marine-terminating glaciers of central east Greenland, 2000–2010. Cryosphere 6, 211–220 (2012). DOI: 10.5194/tc-6-211-2012
King, M. et al. Greenland Outlet Glacier Discharge, Ohio State University, Dataset. https://doi.org/10.5061/dryad.qrfj6q5cb (2020).