Antarctica; climate change; glaciology; GRACE; Greenland; mass balance; Antarctic Peninsula; Cold summers; Data continuity; East antarctica; Gravity recovery and climate experiments; Ice discharges; Regional scale; West antarctica; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] We examine data continuity between the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (FO) missions over Greenland and Antarctica using independent data from the mass budget method, which calculates the difference between ice sheet surface mass balance and ice discharge at the periphery. For both ice sheets, we find consistent GRACE/GRACE-FO time series across the data gap, at the continental and regional scales, and the data gap is confidently filled with mass budget method data. In Greenland, the GRACE-FO data reveal an exceptional summer loss of 600 Gt in 2019 following two cold summers. In Antarctica, ongoing high mass losses in the Amundsen Sea Embayment of West Antarctica, the Antarctic Peninsula, and Wilkes Land in East Antarctica cumulate to 2130, 560, and 370 Gt, respectively, since 2002. A cumulative mass gain of 980 Gt in Queen Maud Land since 2009, however, led to a pause in the acceleration in mass loss from Antarctica after 2016.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Velicogna, Isabella ; Department of Earth System Science, University of California, Irvine, United States ; Jet Propulsion Laboratory, Pasadena, United States
Mohajerani, Yara ; Department of Earth System Science, University of California, Irvine, United States
Geruo, A. ; Department of Earth System Science, University of California, Irvine, United States
Landerer, Felix ; Jet Propulsion Laboratory, Pasadena, United States
Mouginot, Jeremie ; Department of Earth System Science, University of California, Irvine, United States ; University of Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Rignot, Eric ; Department of Earth System Science, University of California, Irvine, United States ; Jet Propulsion Laboratory, Pasadena, United States
Sutterley, Tyler ; Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, United States
van den Broeke, Michiel ; University of Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
van Wessem, Melchior ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Wiese, David ; Jet Propulsion Laboratory, Pasadena, United States
Language :
English
Title :
Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow-On Missions
NASA - National Aeronautics and Space Administration
Funding text :
This work was performed at the University of California Irvine, Department of Earth System Science, and at NASA's Jet Propulsion Laboratory under a contract with NASA's program. The GRACE data used in this paper are available at Caltech's Jet Propulsion Laboratory (grace.jpl.nasa.gov). The ice velocity data are available as MEASURES products at the National Snow and Ice Data Center (NSIDC) for Greenland (nsidc.org/data/nsidc-0478) and Antarctica (nsidc.org/data/nsidc-0720). The ice thickness data are available at the NSIDC as BedMachine Greenland (nsidc.org/data/IDBMG4) and BedMachine Antarctica (nsidc.org/data/nsidc-0756). The SMB data are available on the PANGAEA database (doi.pangaea.de/10.1594/PANGAEA.896940). GRACE data from the figures are posted online (ess.uci.edu/~velicogna/grace-fo.php).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Geruo, A., Wahr, J., & Zhong, S. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2), 557–572.
Bandikova, T., McCullough, C., Kruizinga, G. L., Save, H., & Christophe, B. (2019). GRACE accelerometer data transplant. Advances in Space Research, 64(3), 623–644.
Cheng, M., & Ries, J. (2017). The unexpected signal in GRACE estimates of C20. Journal Geodesy, 91(8), 897–914.
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., & Wahr, J. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857.
Hanna, E., Fettweis, X., Mernild, S., John, C., Ribergaard, M. H., Shuman, C. A., & Motem, T. L.(2014). Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. International Journal of Climatology, 34, 1022–1037.
Ivins, E. R., James, T. S., Wahr, J., Schrama, O., Ernst, J., Landerer, F. W., & Simon, K. M. (2013). Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. Journal of Geophysical Research: Solid Earth, 118, 3126–3141. https://doi.org/10.1002/jgrb.50208
Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514–518.
Lenaerts, J. T., van Meijgaard, E. M., van den Broeke, M. R., Ligtenberg, S. R. M., & Horwath, M. E. I.(2013). Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophysical Research Letters, 40, 2684–2688. https://doi.org/10.1002/grl.50559
Loomis, B. D., Rachlin, K. E., & Luthcke, S. B. (2019). Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophysical Research Letters, 46, 6910–6917. https://doi.org/10.1029/2019GL082929
Medley, B., McConnell, J., Neumann, T. A., Reijmer, C. H., Chellman, N., Sigl, M., & Kipfstuhl, S. (2017). Temperature and snowfall in Western Queen Maud Land increasing faster than climate model projections. Geophysical Research Letters, 45, 1472–1480. https://doi.org/10.1002/2017GL075992
Mohajerani, Y., Velicogna, I., & Rignot, E. (2018). Mass loss of Totten and Moscow University Glaciers, East Antarctica, using regionally optimized GRACE Mascons. Geophysical Research Letters, 45, 7010–7018. https://doi.org/10.1029/2018GL078173
Mohajerani, Y., Velicogna, I., & Rignot, E. (2019). Evaluation of regional climate models using regionally-optimized GRACE Mascons in the Amery and Getz ice shelves basins, Antarctica. Geophysical Research Letters, 46, 13,883–13,891. https://doi.org/10.1029/2019GL084665
Morlighem, M., Rignot, E., & Tim Binder, E. A. (2019). Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 13, 132–137. https://doi.org/10.1038/s41561-019-0510-8
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., & Zinglersen, K. B. (2017). BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 44, 11,051–11,061. https://doi.org/10.1002/2017GL074954
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., & Wood, M.(2019). Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9239–9244.
Mouginot, J., Rignot, E., & Scheuchl, B. (2019). Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophysical Research Letters, 46, 9710–9718. https://doi.org/10.1029/2019GL083826
Noël, B., van de Berg, W. J., Wessem, V., Melchior, J., Van Meijgaard, E., & Van As, D. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2-Part 1: Greenland (1958-2016). The Cryosphere, 12(3), 811–831.
Peltier, W., Argus, D., & Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120, 450–487. https://doi.org/10.1002/2014JB011176
Rignot, E., & Mouginot, J. (2012). Ice flow in Greenland for the International Polar Year 2008–2009. Geophysical Research Letters, 39, L11501. https://doi.org/10.1029/2012GL051634
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., & Morlighem, M.(2019). Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116(4), 1095–1103.
Rintoul, S. R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M., Greenbaum, J. S., & Blankenship, D. D. (2016). Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances, 2, e1601610.
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., & Bettadpur, S. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183–1189.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M., & Velicogna, I. (2018). Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature, 558, 219–222.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M., & Velicogna, I. (2019). Mass balance of the Greenland ice sheet from 1992 to 2018. Nature, 558, 219–222. https://doi.org/10.1038/s41586-019-1855-2
Simpson, M. J., Milne, G. A., Huybrechts, P., & Long, A. J. (2009). Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews, 28(17), 1631–1657.
Sutterley, T. C., & Velicogna, I. (2019). Improved estimates of geocenter variability from time-variable gravity and ocean model outputs. Remote Sensing, 11(18), 2108.
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., & Rodell, M. (2019). Contributions of GRACE to understanding climate change. Nature Climate Change, 9, 358–369.
Tedesco, M., & Fettweis, X. (2019). Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet. The Cryosphere Discussions. https://doi.org/10.5194/tc-2019-254
van Wessem, J. M., Jan Van De Berg, W., Noël, B. P., Van Meijgaard, E., Amory, C., & Birnbaum, G.(2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2: Part 2: Antarctica (1979-2016). The Cryosphere, 12(4), 1479–1498.
van Wessem, J. M., Ligtenberg, S. R. M., Reijmer, C. H., van de Berg, W. J., van den Broeke, M. R., Barrand, N. E., & van Meijgaard, E. (2016). The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution. The Cryosphere, 10, 271–285.
Van Wessem, J., Reijmer, C., Morlighem, M., Mouginot, J., Rignot, E., & Medley, B. (2014). Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology, 60(222), 761–770.
Velicogna, I., Sutterley, T., & van den Broeke, M. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, 41, 8130–8137. https://doi.org/10.1002/2014GL061052
Velicogna, I., & Wahr, J. (2006). Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768), 1754–1756.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.