[en] The response of the Greenland Ice Sheet (GrIS) to a warmer climate is uncertain on long time scales. Climate models, such as those participating in the Coupled Model Intercomparison Project phase 6 (CMIP6), are used to assess this uncertainty. The Community Earth System Model version 2.1 (CESM2) is a CMIP6 model capable of running climate simulations with either one-way coupling (fixed ice sheet geometry) or two-way coupling (dynamic geometry) to the GrIS. The model features prognostic snow albedo, online downscaling using elevation classes, and a firn pack to refreeze percolating melt water. Here we evaluate the representation of the GrIS surface energy balance and surface mass balance in CESM2 at 1° resolution with fixed GrIS geometry. CESM2 agrees closely with ERA-Interim reanalysis data for key controls on GrIS SMB: surface pressure, sea ice extent, 500 hPa geopotential height, wind speed, and 700 hPa air temperature. Cloudsat-CALIPSO data show that supercooled liquid-containing clouds are adequately represented, whereas comparisons to Moderate Resolution Imaging Spectroradiometer and CM SAF Cloud, Albedo, and Surface Radiation data set from Advanced Very High Resolution Radiometer data second edition data suggest that CESM2 underestimates surface albedo. The seasonal cycle and spatial patterns of surface energy balance and surface mass balance components in CESM2 agree well with regional climate model RACMO2.3p2, with GrIS-integrated melt, refreezing, and runoff bracketed by RACMO2 counterparts at 11 and 1 km. Time series of melt, runoff, and SMB show a break point around 1990, similar to RACMO2. These results suggest that GrIS SMB is realistic in CESM2, which adds confidence to coupled ice sheet-climate experiments that aim to assess the GrIS contribution to future sea level rise.
Disciplines :
Earth sciences & physical geography
Author, co-author :
van Kampenhout, Leonardus ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Lenaerts, Jan T. M. ; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
Lipscomb, William H. ; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, United States
Lhermitte, Stef ; Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Vizcaíno, Miren ; Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
Sacks, William J. ; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, United States
van den Broeke, Michiel R. ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Present-Day Greenland Ice Sheet Climate and Surface Mass Balance in CESM2
OCW - Ministry of Education Culture and Science NSF - National Science Foundation
Funding text :
This work was carried out under the program of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture and Science (OCW, Grant 024.002.001). The CESM project is supported primarily by the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement 1852977. Computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. We thank all the scientists, software engineers, and administrators who contributed to the development of CESM2. The HIST-EC climate simulation was performed on SURFsara HPC systems with support from NWO Exacte Wetenschappen. Climate data for simulations HIST-01 (historical.r1i1p1f1) to HIST-06 (historical.r6i1p1f1) are publicly available from Earth System Grid Federation (https://esgf.llnl.gov/nodes.html). Climate data for simulation HIST-EC are publicly available from Zenodo; native resolution https://doi.org/10.5281/zenodo.3369633, 11 km offline downscaled https://doi.org/10.5281/zenodo.3369635, and 1 km offline downscaled https://doi.org/10.5281/zenodo.3368630. RACMO climate data used in this paper are publicly available from Zenodo as well; 11 km native https://doi.org/10.5281/zenodo.3368404, and 1 km downscaled https://doi.org/10.5281/zenodo.3367210.
Alexander, P. M., LeGrande, A. N., Fischer, E., Tedesco, M., Fettweis, X., Kelley, M., Nowicki, S. M. J., & Schmidt, G. A. (2019). Simulated Greenland surface mass balance in the GISS ModelE2 GCM: Role of the ice sheet surface. Journal of Geophysical Research: Earth Surface, 124, 750–765. https://doi.org/10.5194/tc-8-2293-2014
Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., & van den Broeke, M. R. (2014). Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013). The Cryosphere, 8(6), 2293–2312 en. https://doi.org/10.1029/2018JF004772
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M., van den Broeke, M. R., & Noel, B. (2018). Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. Journal of Geophysical Research: Oceans, 123, 1827–1837. https://doi.org/10.1002/2017JC013605
Bamber, J. L., Westaway, R. M., Marzeion, B., & Wouters, B. (2018). The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13(6), 063008. https://doi.org/10.1088/1748-9326/aac2f0
Beljaars, AntonC. M., Brown, A. R., & Wood, N. (2004). A new parametrization of turbulent orographic form drag. Quarterly Journal of the Royal Meteorological Society, 130(599), 1327–1347. https://doi.org/10.1256/qj.03.73
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., & Pettersen, C. (2013). July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496(7443), 83–86. https://doi.org/10.1038/nature12002
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., & Charette, M. A. (2013). Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geoscience, 6(4), 274–278. https://doi.org/10.1038/ngeo1746
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., & Schanen, D. P. (2013). Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. Journal of Climate, 26(23), 9655–9676. https://doi.org/10.1175/JCLI-D-13-00075.1
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., & Bamber, J. L. (2016). Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience, 9(7), 523–527. https://doi.org/10.1038/ngeo2740
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., & Nunn, P. D. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Sea level change, 1137–1216.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Jansson, P., Braithwaite, R. J., Kaser, G., Möller, M., Nicholson, L., & Zemp, M. (2011). Glossary of glacier mass balance and related terms.
Cullather, R. I., & Nowicki, S. M. J. (2018). Greenland Ice Sheet surface melt and its relation to daily atmospheric conditions. Journal of Climate, 31(5), 1897–1919. https://doi.org/10.1175/JCLI-D-17-0447.1
Cullather, R. I., Nowicki, S. M. J., Zhao, B., & Suarez, M. J. (2014). Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. Journal of Climate, 27(13), 4835–4856.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., & Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
Dutra, E., Balsamo, G., Viterbo, P., Miranda, PedroM. A., Beljaars, A., Schär, C., & Elder, K.(2010). An improved snow scheme for the ECMWF land surface model: Description and offline validation. Journal of Hydrometeorology, 11(4), 899–916. https://doi.org/10.1175/2010JHM1249.1
Erokhina, O., Rogozhina, I., Prange, M., Bakker, P., Bernales, J., Paul, A., & Schulz, M. (2017). Dependence of slope lapse rate over the Greenland ice sheet on background climate. Journal of Glaciology, 568–572. https://doi.org/10.1017/jog.2017.10
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Box, J. E., & Steffen, K.(2010). Climate of the Greenland ice sheet using a high-resolution climate model –Part 1: Evaluation. The Cryosphere, 4(4), 511–527. https://doi.org/10.5194/tc-4-511-2010
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Fausto, R. S., Ahlstrøm, A. P., Van As, D., Bøggild, C. E., & Johnsen, S. J. (2009). A new present-day temperature parameterization for Greenland. Journal of Glaciology, 55(189), 95–105.
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., & Gallée, H. (2017). Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11(2), 1015–1033. https://doi.org/10.5194/tc-11-1015-2017
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., & Gallée, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7(2), 469–489. https://doi.org/10.5194/tc-7-469-2013
Fettweis, X., Hanna, E., Lang, C., Belleflamme, A., Erpicum, M., & Gallée, H. (2013). Brief communication: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. The Cryosphere, 7(1), 241–248. https://doi.org/10.5194/tc-7-241-2013
Fichefet, T., Poncin, C., Goosse, H., Huybrechts, P., Janssens, I., & Treut, H. L. (2003). Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophysical Research Letters, 30(17), 1911. https://doi.org/10.1029/2003GL017826
Flanner, M. G., & Zender, C. S. (2005). Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophysical Research Letters, 32, L06501. https://doi.org/10.1029/2004GL022076
Flanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. (2007). Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research, 112, D11202. https://doi.org/10.1029/2006JD008003
Fyke, J., Sergienko, O., Löfverström, M., Price, S., & Lenaerts, JanT. M. (2018). An overview of interactions and feedbacks between ice sheets and the Earth system. Reviews of Geophysics, 56, 361–408. https://doi.org/10.1029/2018RG000600
Fyke, J. G., Vizcaíno, M., & Lipscomb, W. H. (2014). The pattern of anthropogenic signal emergence in Greenland Ice Sheet surface mass balance. Geophysical Research Letters, 41, 6002–6008. https://doi.org/10.1002/2014GL060735
Fyke, J. G., Vizcaíno, M., Lipscomb, W., & Price, S. (2014). Future climate warming increases Greenland ice sheet surface mass balance variability. Geophysical Research Letters, 41, 470–475. https://doi.org/10.1002/2013GL058172
Gerdes, R., Hurlin, W., & Griffies, S. M. (2006). Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Modelling, 12(3), 416–435. https://doi.org/10.1016/j.ocemod.2005.08.003
Gettelman, A., & Morrison, H. (2014). Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28(3), 1268–1287. https://doi.org/10.1175/JCLI-D-14-00102.1
Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., & Caldwell, P. M. (2014). Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol-cloud interactions. Journal of Climate, 28(3), 1288–1307. https://doi.org/10.1175/JCLI-D-14-00103.1
Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale, R. B., Bogenschutz, P. A., & Simpson, I. R. (2019). The Single Column Atmosphere Model Version 6 (SCAM6): Not a scam but a tool for model evaluation and development. Journal of Advances in Modeling Earth Systems, 11, 1381–1401. https://doi.org/10.1029/2018MS001578
Gillard, L. C., Hu, X., Myers, P. G., & Bamber, J. L. (2016). Meltwater pathways from marine terminating glaciers of the Greenland ice sheet. Geophysical Research Letters, 43(20), 10,873–10,882. https://doi.org/10.1002/2016GL070969
Goelzer, H., Noel, BriceP. Y., Edwards, T. L., Fettweis, X., Gregory, J. M., Lipscomb, W. H., van de Wal, RoderikS. W., & van den Broeke, M. R. (2019). Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections. The Cryosphere Discussions, 1–20. https://doi.org/10.5194/tc-2019-188
Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge, N. R., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H., Larour, E., Lipscomb, W. H., Le clec'h, S., Lee, V., Morlighem, M., Pattyn, F., Payne, A. J., Rodehacke, C., Rückamp, M., Saito, F., Schlegel, N., Seroussi, H., Shepherd, A., Sun, S., van de Wal, R., & Ziemen, F. A. (2018). Design and results of the ice sheet model initialisation experiments initMIP-Greenland: An ISMIP6 intercomparison. The Cryosphere, 12(4), 1433–1460 en. https://doi.org/10.5194/tc-12-1433-2018
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Clec'h, S. L., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D., Smith, R., Straneo, F., Tarasov, L., van de Wal, R., & van den Broeke, M. (2020). The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6. The Cryosphere Discussions, 1–43.
Greuell, W., & Konzelmann, T. (1994). Numerical modelling of the energy balance and the englacial temperature of the Greenland Ice Sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m asl). Global and Planetary change, 9(1-2), 91–114.
Hanna, E., Fettweis, X., & Hall, R. J. (2018). Brief communication: Recent changes in summer Greenland blocking captured by none of the CMIP5 models. The Cryosphere, 12(10), 3287–3292. https://doi.org/10.5194/tc-12-3287-2018
Hanna, E., Huybrechts, P., Janssens, I., Cappelen, J., Steffen, K., & Stephens, A. (2005). Runoff and mass balance of the Greenland ice sheet: 1958–2003. Journal of Geophysical Research, 110, D13108. https://doi.org/10.1029/2004JD005641
Hermann, M., Box, J. E., Fausto, R. S., Colgan, W. T., Langen, P. L., Mottram, R., Wuite, J., Noël, B., van den Broeke, M. R., & van As, D. (2018). Application of PROMICE Q-transect in situ accumulation and ablation measurements (2000–2017) to constrain mass balance at the southern tip of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 123, 1235–1256. https://doi.org/10.1029/2017JF004408
Hu, A., Meehl, G. A., Han, W., Yin, J., Wu, B., & Kimoto, M. (2012). Influence of continental ice retreat on future global climate. Journal of Climate, 26(10), 3087–3111. https://doi.org/10.1175/JCLI-D-12-00102.1
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., & Elliott, S. (2015). CICE: The Los Alamos sea ice model documentation and software user's manual version 5.
Jennings, K. S., Winchell, T. S., Livneh, B., & Molotch, N. P. (2018). Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nature Communications, 9(1), 1148. https://doi.org/10.1038/s41467-018-03629-7
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Fokke Meirink, J., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper, S., Håkansson, N., & Hollmann, R. (2017). CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmospheric Chemistry and Physics, 17(9), 5809–5828. https://doi.org/10.5194/acp-17-5809-2017
Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., & Eaton, B. (2016). Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. Journal of Geophysical Research: Atmospheres, 121, 4162–4176. https://doi.org/10.1002/2015JD024699
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., & Vertenstein, M.(2015). The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, 96(8), 1333–1349. https://doi.org/10.1175/BAMS-D-13-00255.1
Khan, S. A., Aschwanden, A., Bjørk, A. A., Wahr, J., Kjeldsen, K. K., & Kjær, K. H.(2015). Greenland ice sheet mass balance: A review. Reports on Progress in Physics, 78(4), 46801. https://doi.org/10.1088/0034-4885/78/4/046801
Kuo, C., Feldman, D. R., Huang, X., Flanner, M., Yang, P., & Chen, X. (2018). Time-dependent cryospheric longwave surface emissivity feedback in the Community Earth System Model. Journal of Geophysical Research: Atmospheres, 123, 789–813. https://doi.org/10.1002/2017JD027595
Lacour, A., Chepfer, H., Miller, N. B., Shupe, M. D., Noel, V., Fettweis, X., Gallee, H., Kay, J. E., Guzman, R., & Cole, J. (2018). How well are clouds simulated over Greenland in climate models? Consequences for the surface cloud radiative effect over the ice sheet. Journal of Climate, 31(22), 9293–9312. https://doi.org/10.1175/JCLI-D-18-0023.1
Langen, P. L., Fausto, R. S., Vandecrux, B., Mottram, R. H., & Box, J. E. (2017). Liquid water flow and retention on the greenland ice sheet in the regional climate model HIRHAM5: Local and large-scale impacts. Frontiers in Earth Science, 4, 18. https://doi.org/10.3389/feart.2016.00110
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., & Zeng, X. (2019). The Community Land Model Version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245–4287. https://doi.org/10.1029/2018MS001583
Le clec'h, S., Charbit, S., Quiquet, A., Fettweis, X., Dumas, C., Kageyama, M., Wyard, C., & Ritz, C. (2019). Assessment of the Greenland ice sheet-atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model. The Cryosphere, 13(1), 373–395. https://doi.org/10.5194/tc-13-373-2019
Lenaerts, JanT. M., Medley, B., van den Broeke, M. R., & Wouters, B. (2019). Observing and modeling ice sheet surface mass balance. Reviews of Geophysics, 57, 376–420. https://doi.org/10.1029/2018RG000622
Lenaerts, J. T. M., van den Broeke, M. R., Déry, S. J., van Meijgaard, E., van de Berg, W. J., Palm, S. P., & Sanz Rodrigo, J. (2012). Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. Journal of Geophysical Research, 117, D05108. https://doi.org/10.1029/2011JD016145
Lenaerts, J. T., Vizcaino, M., Fyke, J., van Kampenhout, L., & van den Broeke, M. R. (2016). Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Climate Dynamics, 47(5-6), 1367–1381. https://doi.org/10.1029/2011JD016145
Levermann, A., & Winkelmann, R. (2016). A simple equation for the melt elevation feedback of ice sheets. The Cryosphere, 10(4), 1799–1807. https://doi.org/10.5194/tc-10-1799-2016
Lindvall, J., Svensson, G., & Hannay, C. (2012). Evaluation of near-surface parameters in the two versions of the atmospheric model in CESM1 using flux station observations. Journal of Climate, 26(1), 26–44. https://doi.org/10.1175/JCLI-D-12-00020.1
Lipscomb, W. H., Fyke, J. G., Vizcaíno, M., Sacks, W. J., Wolfe, J., Vertenstein, M., Craig, A., Kluzek, E., & Lawrence, D. M. (2013). Implementation and initial evaluation of the Glimmer community ice sheet model in the Community Earth System Model. Journal of Climate, 26(19), 7352–7371. https://doi.org/10.1175/JCLI-D-12-00557.1
Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R., Bradley, S. L., Evans, K. J., Fyke, J. G., Kennedy, J. H., Perego, M., Ranken, D. M., Sacks, W. J., Salinger, A. G., Vargo, L. J., & Worley, P. H. (2019). Description and evaluation of the Community Ice Sheet Model (CISM) v2.1. Geoscientific Model Development, 12(1), 387–424.
Little, C. M., Piecuch, C. G., & Chaudhuri, A. H. (2016). Quantifying Greenland freshwater flux underestimates in climate models. Geophysical Research Letters, 43, 5370–5377. https://doi.org/10.1002/2016GL068878
McIlhattan, E. A., L'Ecuyer, T. S., & Miller, N. B. (2017). Observational evidence linking arctic supercooled liquid cloud biases in CESM to snowfall processes. Journal of Climate, 30(12), 4477–4495. https://doi.org/10.1175/JCLI-D-16-0666.1
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., & Larour, E. (2014). Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nature Geoscience, 7(6), 418–422. https://doi.org/10.1038/ngeo2167
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., & Zinglersen, K. B. (2017). BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 44, 11,051–11,061. https://doi.org/10.1002/2017GL074954
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., & Sulia, K. (2012). Resilience of persistent Arctic mixed-phase clouds. Nature Geoscience, 5(1), 11–17 en. https://doi.org/10.1038/ngeo1332
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., & Wood, M. (2019). Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9239–9244. https://doi.org/10.1073/pnas.1904242116
Muggeo, V. M. R. (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22(19), 3055–3071. https://doi.org/10.1002/sim.1545
Muggeo, V. M. R. (2017). Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Australian & New Zealand Journal of Statistics, 59(3), 311–322. https://doi.org/10.1111/anzs.12200
Niwano, M., Aoki, T., Hashimoto, A., Matoba, S., Yamaguchi, S., Tanikawa, T., Fujita, K., Tsushima, A., Iizuka, Y., Shimada, R., & Hori, M. (2018). NHM–SMAP: Spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet. The Cryosphere, 12(2), 635–655. https://doi.org/10.5194/tc-12-635-2018
Noël, B., Fettweis, X., van de Berg, W. J., van den Broeke, M. R., & Erpicum, M.(2014). Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: A study with the regional climate model MAR. The Cryosphere, 8, 1871–1883. https://doi.org/10.5194/tc-8-1871-2014
Noël, B., van Kampenhout, L., van de Berg, W. J., Lenaerts, JanT. M., Wouters, B., & van den Broeke, M. R. (2019). Brief communication: CESM2 climate forcing (1950–2014) yields realistic Greenland ice sheet surface mass balance. The Cryosphere Discussions, 1–17. https://doi.org/10.5194/tc-2019-209
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., & van den Broeke, M. R. (2016). A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). The Cryosphere, 10(5), 2361–2377.
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P. P., van Ulft, L. H., van de Wal, R. S. W., & van den Broeke, M. R. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2 –Part 1: Greenland (1958–2016). The Cryosphere, 12(3), 811–831. https://doi.org/10.5194/tc-12-811-2018
Nowicki, S. M. J., Payne, A., Larour, E., Seroussi, H., Goelzer, H., Lipscomb, W., Gregory, J., Abe-Ouchi, A., & Shepherd, A. (2016). Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. Geoscientific Model Development, 9(12), 4521–4545. https://doi.org/10.5194/gmd-9-4521-2016
Oleson, K. W. (2013). Technical description of version 4.5 of the Community Land Model (CLM) (NCAR Technical Note NCAR/TN-503+ STR). Boulder, CO: National Center for Atmospheric Research.
Punge, H. J., Gallée, H., Kageyama, M., & Krinner, G. (2012). Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM. Climate of the Past, 8, 1801–1819. https://doi.org/10.5194/cp-8-1801-2012
Rae, J. G. L., Aðalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory, J. M., Hewitt, H. T., Lowe, J. A., Lucas-Picher, P., Mottram, R. H., Payne, A. J., Ridley, J. K., Shannon, S. R., van de Berg, W. J., van de Wal, R. S. W., & van den Broeke, M. R. (2012). Greenland ice sheet surface mass balance: Evaluating simulations and making projections with regional climate models. The Cryosphere, 6(6), 1275–1294. https://doi.org/10.5194/tc-6-1275-2012
Sandells, M., Essery, R., Rutter, N., Wake, L., Leppänen, L., & Lemmetyinen, J. (2017). Microstructure representation of snow in coupled snowpack and microwave emission models. The Cryosphere, 11(1), 229–246. https://doi.org/10.5194/tc-11-229-2017
Sellevold, R., van Kampenhout, L., Lenaerts, JanT. M., Noël, B., Lipscomb, W. H., & Vizcaino, M. (2019). Surface mass balance downscaling through elevation classes in an Earth system model: Application to the Greenland ice sheet. The Cryosphere, 13(12), 3193–3208 English. https://doi.org/10.5194/tc-13-3193-2019
Shannon, S., Smith, R., Wiltshire, A., Payne, T., Huss, M., Betts, R., Caesar, J., Koutroulis, A., Jones, D., & Harrison, S. (2019). Global glacier volume projections under high-end climate change scenarios. The Cryosphere, 13(1), 325–350. https://doi.org/10.5194/tc-13-325-2019
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., & Gent, P. (2010). The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM). Rep. LAUR-01853, 141, 1–140.
Sodemann, H., Schwierz, C., & Wernli, H. (2008). Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. Journal of Geophysical Research, 113, D03107. https://doi.org/10.1029/2007JD008503
Stroeve, J., Box, J. E., Wang, Z., Schaaf, C., & Barrett, A. (2013). Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends. Remote Sensing of Environment, 138, 199–214. https://doi.org/10.1016/j.rse.2013.07.023
Stroeve, J. C., Mioduszewski, J. R., Rennermalm, A., Boisvert, L. N., Tedesco, M., & Robinson, D.(2017). Investigating the local-scale influence of sea ice on Greenland surface melt. The Cryosphere, 11(5), 2363–2381. https://doi.org/10.5194/tc-11-2363-2017
Swenson, S. C., & Lawrence, D. M. (2012). A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance. Journal of Geophysical Research, 117, D21107. https://doi.org/10.1029/2012JD018178
van Angelen, J. H., M. Lenaerts, J. T., van den Broeke, M. R., Fettweis, X., & van Meijgaard, E. (2013). Rapid loss of firn pore space accelerates 21st century Greenland mass loss. Geophysical Research Letters, 40(10), 2109–2113. https://doi.org/10.1002/grl.50490
van Kampenhout, L., Lenaerts, J. T. M., Lipscomb, W. H., Sacks, W. J., Lawrence, D. M., Slater, A. G., & van den Broeke, M. R. (2017). Improving the representation of polar snow and firn in the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 9, 2583–2600. https://doi.org/10.1002/2017MS000988
van Kampenhout, L., Rhoades, A. M., Herrington, A. R., Zarzycki, C. M., Lenaerts, JanT. M., Sacks, W. J., & van den Broeke, M. R. (2019). Regional grid refinement in an Earth system model: Impacts on the simulated Greenland surface mass balance. The Cryosphere, 13(6), 1547–1564. https://doi.org/10.5194/tc-13-1547-2019
Van Tricht, K., Lhermitte, S., Gorodetskaya, I. V., & van Lipzig, N. P. M. (2016). Improving satellite-retrieved surface radiative fluxes in polar regions using a smart sampling approach. The Cryosphere, 10(5), 2379–2397. https://doi.org/10.1038/ncomms10266
Van Tricht, K., Lhermitte, S., Lenaerts, J. T. M., Gorodetskaya, I. V., L'Ecuyer, T. S., Noël, B., van den Broeke, M. R., Turner, D. D., & van Lipzig, N. P. M. (2016). Clouds enhance Greenland ice sheet meltwater runoff. Nature Communications, 7, 10266. https://doi.org/10.5194/tc-10-2379-201
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, BriceP. Y., van de Berg, W. J., van Meijgaard, E., & Wouters, B. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10(5), 1933–1946. https://doi.org/10.5194/tc-10-1933-201
van den Broeke, M., Smeets, P., & Ettema, J. (2009). Surface layer climate and turbulent exchange in the ablation zone of the west Greenland ice sheet. International Journal of Climatology, 29(15), 2309–2323. https://doi.org/10.1002/joc.1815
Vignon, E., Hourdin, F., Genthon, C., Van de Wiel, B. J. H., Gallée, H., Madeleine, J.-B., & Beaumet, J. (2018). Modeling the dynamics of the atmospheric boundary layer over the Antarctic Plateau with a general circulation model. Journal of Advances in Modeling Earth Systems, 10, 98–125. https://doi.org/10.1002/2017MS001184
Vizcaino, M. (2014). Ice sheets as interactive components of Earth System Models: Progress and challenges: Ice sheets as interactive components of Earth System Models. Wiley Interdisciplinary Reviews: Climate Change, 5(4), 557–568. https://doi.org/10.1002/wcc.285
Vizcaíno, M., Lipscomb, W. H., Sacks, W. J., van Angelen, J. H., Wouters, B., & van den Broeke, M. R. (2013). Greenland surface mass balance as simulated by the Community Earth System Model. Part I: Model evaluation and 1850–2005 results. Journal of Climate, 26(20), 7793–7812. https://doi.org/10.1175/JCLI-D-12-00615.1
Vizcaíno, M., Lipscomb, W. H., Sacks, W. J., & van den Broeke, M. (2014). Greenland surface mass balance as simulated by the Community Earth System Model. Part II: Twenty-first-century changes. Journal of Climate, 27(1), 215–226. https://doi.org/10.1175/JCLI-D-12-00588.1
Yang, Y., Marshak, A., Han, M., Palm, S. P., & Harding, D. J. (2017). Snow grain size retrieval over the polar ice sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 188, 159–164. https://doi.org/10.1016/j.jqsrt.2016.03.033
Ziemen, F., Rodehacke, C., & Mikolajewicz, U. (2014). Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions. Climate of the Past, 10, 1817–1836. https://doi.org/10.5194/cp-10-1817-2014