coralline algae; glacial runoff; sea surface temperature; Soil Science; Forestry; Water Science and Technology; Paleontology; Atmospheric Science; Aquatic Science; Ecology
Abstract :
[en] One of the most dramatic signs of ongoing global change is the mass loss of the Greenland Ice Sheet and the resulting rise in sea level, whereby most of the recent ice sheet mass loss can be attributed to an increase in meltwater runoff. The retreat and thinning of Greenland glaciers has been caused by rising air and ocean temperatures over the past decades. Despite the global scale impact of the changing ice sheet balance, estimates of glacial runoff in Greenland rarely extend past several decades, thus limiting our understanding of long-term glacial response to temperature. Here we present a 42-year long annually resolved red coralline algal Mg/Ca proxy temperature record from a southwestern Greenland fjord, with temperature ranging from 1.5 to 4 °C (standard error = 1.06 °C). This temperature time series in turn tracks the general trend of glacial runoff from four West Greenland glaciers discharging freshwater into the fjord (all p < 0.001). The algal time series further exhibits significant correlations to Irminger Sea temperature patterns, which are transmitted to western Greenland fjords via the West Greenland Current. The 42-year long record demonstrates the potential of annual increment forming coralline algae, which are known to live up to 650 years and which are abundant along the Greenland coastline, for reconstructing time series of sea surface temperature.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Williams, Siobhan ; CPS-Department, University of Toronto Mississauga, Mississauga, Canada
Halfar, Jochen; CPS-Department, University of Toronto Mississauga, Mississauga, Canada
Zack, Thomas ; Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Hetzinger, Steffen; Institut für Geologie, Universität Hamburg, Hamburg, Germany
Blicher, Martin; Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
Juul-Pedersen, Thomas ; Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
Kronz, Andreas ; Geowissenschaftliches Zentrum, Universität Göttingen, Göttingen, Germany
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
van den Broeke, Michiel; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
van de Berg, Willem Jan ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Coralline Algae Archive Fjord Surface Water Temperatures in Southwest Greenland
GSA - Geological Society of America NSERC - Natural Sciences and Engineering Research Council
Funding text :
The authors declare no competing interests. Coralline algal Mg/Ca and model output runoff data are available in supporting information. We acknowledge the marine monitoring program MarineBasis-Nuuk, part of the Greenland Ecosystem Monitoring, for supplying the in situ temperature data. This work was funded by the Centre for Global Change Science; the Geological Society of America; and a Natural Sciences and Engineering Research Council of Canada Discovery grant to J. H.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adey, W. H. (1970). The effects of light and temperature on growth rates in boreal-subarctic crustose corallines. Journal of Phycology, 9, 269–276
Adey, W. H., Halfar, J., & Williams, B. (2013). The coralline genus Clathromorphum foslie emend. Adey, Smithson. Contributions in Marine Science, 40, 1–41
Buch, E., Pedersen, S. A., & Ribergaard, M. H. (2004). Ecosystem variability in West Greenland waters. Journal of Northwest Atlantic Fishery Science, 34, 13–28. https://doi.org/10.2960/J.v34.m479
Burdett, H., Kamenos, N. A., & Law, A. (2011). Using coralline algae to understand historic marine cloud cover. Palaeogeography Palaeoclimatology Palaeoecology, 302(1–2), 65–70. https://doi.org/10.1016/j.palaeo.2010.07.027
Cuny, J., Rhines, P. B., Niiler, P. P., & Bacon, S. (2002). Labrador Sea boundary currents and the fate of the Irminger Sea water. Journal of Physical Oceanography, 32(2), 627–647. https://doi.org/10.1175/1520-0485(2002)032%3C0627:lsbcat%3E2.0.co;2
Drinkwater, K. F., Miles, M., Medhaug, I., Otterå, O. H., Kristiansen, T., Sundby, S., & Gao, Y. (2014). The Atlantic multidecadal oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60°N. Journal of Marine Systems, 133, 117–130. https://doi.org/10.1016/j.jmarsys.2013.11.001
ECMWF-IFS: ECMWF-IFS (2008): Part IV: Physical processes (CY33R1), Technical Report
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., & Van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41, 866–872. https://doi.org/10.1002/2013GL059010
Enderlin, E. M., Howat, I. M., & Vieli, A. (2013). High sensitivity of tidewater outlet glacier dynamics to shape. The Cryosphere, 7(3), 1007–1015. https://doi.org/10.5194/tc-7-1007-2013
Flannery, J. A., Richey, J. N., Thirumalai, K., Poore, R. Z., & DeLong, K. L. (2017). Multi-species coral Sr/Ca-based sea-surface temperature reconstruction using Orbicella faveolata and Siderastrea siderea from the Florida Straits. Palaeogeography Palaeoclimatology Palaeoecology, 466, 100–109. https://doi.org/10.1016/j.palaeo.2016.10.022
Gamboa, G., Halfar, J., Hetzinger, S., Adey, W. H., Zack, T., Kunz, B. E., & Jacob, D. E. (2010). Mg/Ca ratios in coralline algae record northwest Atlantic temperature variations and North Atlantic Oscillation relationships. Journal of Geophysical Research, 115, C12044. https://doi.org/10.1029/2010JC006262
Halfar, J., Adey, W. H., Kronz, A., Hetzinger, S., Edinger, E., & Fitzhugh, W. W. (2013). Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proceedings of the National Academy of Sciences, 110(49), 19,737–19,741. https://doi.org/10.1073/pnas.1313775110
Halfar, J., Steneck, R. S., Joachimski, M., Kronz, A., & Wanamaker, A. D. (2008). Coralline red algae as high-resolution climate recorders. Geology, 36(6), 463–466. https://doi.org/10.1130/G24635A.1
Halfar, J., Williams, B., Hetzinger, S., Steneck, R. S., Lebednik, P. A., Winsborough, C., et al. (2011). 225 years of Bering Sea climate and ecosystem dynamics revealed by coralline algal growth-increment widths. Geology, 39(6), 579–582. https://doi.org/10.1130/G31996.1
Hanna, E., Huybrechts, P., Cappelen, J., Steffen, K., Bales, R. C., Burgess, E. W., et al. (2011). Greenland ice sheet surface mass balance 1870 to 2010 based on twentieth century reanalysis, and links with global climate forcing. Journal of Geophysical Research, 116, D24121. https://doi.org/10.1029/2011JD016387
Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., et al. (2008). Increased runoff from melt from the Greenland ice sheet: A response to global warming. Journal of Climate, 21(2), 331–341. https://doi.org/10.1175/2007JCLI1964.1
Hanna, E., Jones, J. M., Cappelen, J., Mernild, S. H., Wood, L., Steffen, K., & Huybrechts, P. (2013). The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. International Journal of Climatology, 33(4), 862–880. https://doi.org/10.1002/joc.3475
Hetzinger, S., Halfar, J., Kronz, A., Simon, K., Adey, W. H., & Steneck, R. S. (2018). Reproducibility of Clathromorphum compactum coralline algal Mg/Ca ratios and comparison to high-resolution sea surface temperature data. Geochimica et Cosmochimica Acta, 220, 96–109. https://doi.org/10.1016/j.gca.2017.09.044
Hetzinger, S., Halfar, J., Kronz, A., Steneck, R. S., Adey, W. H., Lebednik, P. A., & Schöne, B. R. (2009). High-resolution Mg/Ca ratios in a coralline red alga as a proxy for Bering Sea temperature variations from 1902 to 1967. Palaios, 24(6), 406–412. https://doi.org/10.2110/palo.2008.p08-116r
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., & Lyberth, B. (2008). Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience, 1(10), 659–664. https://doi.org/10.1038/ngeo316
Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E., & Scambos, T. A. (2008). Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: Ice dynamics and coupling to climate. Journal of Glaciology, 54(187), 646–660. https://doi.org/10.3189/002214308786570908
Jones, P. D., & Moberg, A. (2003). Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. Journal of Climate, 16(2), 206–223. https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2
Jørgensbye, H. I. Ø., & Halfar, J. (2016). Overview of coralline red algal crusts and rhodolith beds (Corallinales, Rhodophyta) and their possible ecological importance in Greenland. Polar Biology, 1–15. https://doi.org/10.1007/s00300-016-1975-1
Kamenos, N. A., Hoey, T. B., Nienow, P., Fallick, A. E., & Claverie, T. (2012). Reconstructing Greenland ice sheet runoff using coralline algae. Geology, 40(12), 1095–1098. https://doi.org/10.1130/G33405.1
Kerr, R. A. (2000). A North Atlantic climate pacemaker for the centuries. Science, 288(5473), 1984–1985. https://doi.org/10.1126/science.288.5473.1984
Moberly, R. J. (1968). Composition of magnesian calcites of algae and pelecypods by electron microprobe analysis. Sedimentology, 11(1–2), 61–82. https://doi.org/10.1111/j.1365-3091.1968.tb00841.x
Moore, R. D., & Demuth, M. N. (2001). Mass balance and streamflow variability at Place Glacier, Canada, in relation to recent climate fluctuations. Hydrological Processes, 15(18), 3473–3486. https://doi.org/10.1002/hyp.1030
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2017). Special section: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam. Geophysical Research Letters, 44, 1–11. https://doi.org/10.1002/2017GL074954
Mortensen, J., Bendtsen, J., Lennert, K., & Rysgaard, S. (2014). Seasonal variability of the circulation system in a west Greenland tidewater outlet fjord. Godthabsfjord, 2591–2603. https://doi.org/10.1002/2014JF003267.Received
Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahnestock, M., & Rysgaard, S. (2013). On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. Journal of Geophysical Research: Oceans, 118, 1382–1395. https://doi.org/10.1002/jgrc.20134
Mortensen, J., Lennert, K., Bendtsen, J., & Rysgaard, S. (2011). Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland ice sheet. Journal of Geophysical Research, 116, C01013. https://doi.org/10.1029/2010JC006528
Myers, P. G., Kulan, N., & Ribergaard, M. H. (2007). Irminger water variability in the West Greenland current. Geophysical Research Letters, 34, L17601. https://doi.org/10.1029/2007GL030419
Noël, B., Van De Berg, W. J., Van Meijgaard, E., Kuipers Munneke, P., Van De Wal, R. S. W., & Van Den Broeke, M. R. (2015). Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland Ice Sheet. The Cryosphere, 9(5), 1831–1844
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016). The Cryosphere, 12, 811–831. https://doi.org/10.5194/tc-12-811-2018
Paillard, D., Labyrie, L., & Yiou, P. (1996). Macintosh program performs time-series analysis. Eos, Transactions American Geophysical Union, 77, 379
Peterson, T. C. and Vose, R. S., An overview of the Global Historical Climatology Network temperature database, Bulletin of the American Meteorological Society, 78(12), 2837–2849. Retrieved from https://www.ncdc.noaa.gov/ghcnm/v2.php (Accessed 2 May 2016), 1997
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002JD002670
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13), 1609–1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
Rignot, E., Fenty, I., Menemenlis, D., & Xu, Y. (2012). Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Annals of Glaciology, 53(60), 257–266. https://doi.org/10.3189/2012AoG60A136
Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58(1–4), 95–126. https://doi.org/10.1016/0167-2789(92)90103-T
Williams, B., Halfar, J., DeLong, K. L., Hetzinger, S., Steneck, R. S., & Jacob, D. E. (2014). Multi-specimen and multi-site calibration of Aleutian coralline algal Mg/Ca to sea surface temperature. Geochimica et Cosmochimica Acta, 139, 190–204. https://doi.org/10.1016/j.gca.2014.04.006
Williams, S., Halfar, J., Zack, T., Hetzinger, S., Blicher, M., & Juul-Pedersen, T. (2018). Comparison of climate signals obtained from encrusting and free-living rhodolith coralline algae. Chemical Geology, 476, 418–428. https://doi.org/10.1016/j.chemgeo.2017.11.038
Xu, Y., Rignot, E., Menemenlis, D., & Koppes, M. (2012). Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Annals of Glaciology, 53(60), 229–234. https://doi.org/10.3189/2012AoG60A139
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.