[en] The Canadian Arctic Archipelago comprises multiple small glaciers and ice caps, mostly concentrated on Ellesmere and Baffin Islands in the northern (NCAA, Northern Canadian Arctic Archipelago) and southern parts (SCAA, Southern Canadian Arctic Archipelago) of the archipelago, respectively. Because these glaciers are small and show complex geometries, current regional climate models, using 5- to 20-km horizontal resolution, do not properly resolve surface mass balance patterns. Here we present a 58-year (1958-2015) reconstruction of daily surface mass balance of the Canadian Arctic Archipelago, statistically downscaled to 1 km from the output of the regional climate model RACMO2.3 at 11 km. By correcting for biases in elevation and ice albedo, the downscaling method significantly improves runoff estimates over narrow outlet glaciers and isolated ice fields. Since the last two decades, NCAA and SCAA glaciers have experienced warmer conditions (+1.1°C) resulting in continued mass loss of 28.2 ± 11.5 and 22.0 ± 4.5 Gt/year, respectively, more than doubling (11.9 Gt/year) and doubling (11.9 Gt/year) the pre-1996 average. While the interior of NCAA ice caps can still buffer most of the additional melt, the lack of a perennial firn area over low-lying SCAA glaciers has caused uninterrupted mass loss since the 1980s. In the absence of significant refreezing capacity, this indicates inevitable disappearance of these highly sensitive glaciers.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
van de Berg, Willem Jan ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Lhermitte, Stef ; Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
Wouters, Bert ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Schaffer, Nicole ; Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Canada ; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad de La Serena, La Serena, Chile
van den Broeke, Michiel R. ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Six decades of glacial mass loss in the Canadian arctic archipelago
NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek NESSC - Netherlands Earth System Science Centre
Funding text :
B. Noël, W. J. van de Berg, B. Wouters, and M. R. van den Broeke acknowledge support from the Polar Programme of the Netherlands Organization for Scientific Research (NWO/ALW) and the Netherlands Earth System Science Centre (NESSC). All data are available from authors without conditions. Mass balance measurements from the Meighen, Agassiz, Penny, and Devon ice caps were conducted under the Climate Change Geoscience Program (Geological Survey of Canada, Natural Resources Canada) and under McGill University for White Glacier. Logistical support for all fieldwork was provided by the Polar Continental Shelf Project (Natural Resources Canada). We thank the Nunavut Research Institute, Aurora Research Institute, and northern communities for granting permission to conduct research on ice caps and glaciers in the CAA. This compilation of SMB measurements was first published in Gardner et al. (2011). Mass change estimates derived from ICESat and CryoSat-2 are freely available from the authors upon request. Annual mean SMB, total precipitation (from rain and snowfall), total melt (from snow and ice), and runoff (mm w.e./year) covering the NCAA and SCAA at 1 km resolution and averaged for the two periods 1958–1995 and 1996–2015, respectively, can be freely downloaded from PANGAEA at https://doi.org/10.1594/PANGAEA.881315. The daily, 1 km SMB data set and associated components for both NCAA and SCAA (1958–2015) are available from the authors without conditions upon request. B. N. prepared the manuscript, carried out the RACMO2.3 simulation, and produced the downscaled data sets at 1 km for NCAA and SCAA, respectively. B. N., W. J. B., and M. R. B. conceived the downscaling procedure and analyzed the data. W. J. B. carried out the hypsometry change sensitivity experiments. N. S. kindly provided unpublished SMB measurements over Penny ice cap in the SCAA. S. L. processed the 1 km MODIS albedo product. B. W. produced and analyzed the ICESat/CryoSat-2 data sets. All authors commented on the manuscript.
Abdalati, W., Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., et al. (2004). Elevation changes of ice caps in the Canadian Arctic Archipelago. Journal of Geophysical Research, 109, F04007. https://doi.org/10.1029/2003JF000045
Andrews, J. T., Holdsworth, G., & Jacobs, J. D. (2002). Glaciers of the Arctic Islands. Glaciers of Baffin Island. USGS Professional Paper, 1386-J-1, J162-J198.
Baird, P. D. (1952). Method of nourishment of the Barnes ice cap. Journal of Glaciology, 2, 2-9.
Bezeau, P., Sharp, M., Burgess, D., & Gascon, G. (2013). Firn profile changes in response to extreme 21st-century melting at Devon Ice Cap, Nunavut, Canada. Journal of Glaciology, 59, 981-991. https://doi.org/10.3189/2013JoG12J208
Budd, W. F., Keage, P. L., & Blundy, N. A. (1979). Empirical studies of ice sliding. Journal of Glaciology, 23(89), 157-170. https://doi.org/10.1017/S0022143000029804
Casey, K. A., Polashenski, C. M., Chen, J., & Tedesco, M. (2017). Impact of MODIS sensor calibration updates on Greenland ice sheet surface reflectance and albedo trends. The Cryosphere, 11, 1781-1795. https://doi.org/10.5194/tc-11-1781-2017
Clough, J. W., & Løken, O. H. (1968). Radio-echo sounding on the Barnes ice cap, North-central Baffin Island field report 1967, Report Series 2(pp. 87-102). Canada Department of Energy, Mines and Resources, Inland Waters Branch.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., et al. (2011). Glossary of glacier mass balance and related terms, technical documents in hydrology, IHP-VII technical documents in hydrology no. 86, IACS contribution no. 2, UNESCO-IHP, Paris.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597. https://doi.org/ 10.1002/qj.828
European Center for Medium-Range Weather Forecasts-Integrated Forecast System (2008). Part IV: Physical processes (CY33R1) (Tech. Rep.).ECMWF.
Ettema, J., van den Broeke, M. R., van Meijgaard, E., & van de Berg, W. J. (2010). Climate of the Greenland ice sheet using a high-resolution climate model - Part2: Near-surface climate and energy balance. The Cryosphere, 4, 529-544. https://doi.org/10.5194/tc-4-529-2010
Gardner, A., Moholdt, G., Arendt, A., & Wouters, B. (2012). Accelerated contributions of Canada’s Baffin and Bylot Island glaciers to sea level rise over the past half century. The Cryosphere, 6(5), 1103-1125. https://doi.org/10.5194/tc-6-1103-2012
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852-857. https://doi.org/10.1126/science.1234532
Gardner, A. S., Moholdt, G., Wouters, B., Wolken, G. J., Burgess, D. O., Sharp, M. J., et al. (2011). Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473, 357-360. https://doi.org/10.1038/nature10089
Gardner, A., & Sharp, M. (2009). Sensitivity of net mass-balance estimates to near-surface temperature lapse rates when employing the degree-day method to estimate glacier melt. Annals of Glaciology, 50(50), 80-86. https://doi.org/10.3189/172756409787769663
Gascon, G., Sharp, M. J., Burgess, D. O., Bezeau, P., & Bush, A. (2013). Changes in accumulation area firn stratigraphy and meltwater flow during a period of climate warming, Devon Ice Cap, Nunavut, Canada. Journal of Geophysical Research: Earth Surface, 118, 2380-2391. https://doi.org/10.1002/2013JF002838
Gesch, D. B., & Larson, K. S. (1998). Techniques for development of global 1-kilometer digital elevation models. In Proc. Pecora Thirteenth Symposium, CD-ROM, American Society for Photogrammetry and Remote Sensing, Bethesda, MD.
Gilbert, A., Flowers, G. E., Miller, G. H., Refsnider, K., Young, N. E., & Radić, V. (2017). The projected demise of Barnes Ice Cap: evidence of an unusually warm 21st century Arctic. Geophysical Research Letters, 44, 2810-2816. https://doi.org/10.1002/2016GL072394
Government of Canada Natural Resources Canada Map Information Branch (2016). Canadian digital elevation model product specifications edition 1.1. Quebec, Canada: GeoGratis Client Services.
Gray, L., Burgess, D., Copland, L., Demuth, M. N., Dunse, T., Langley, K., & Schuler, T. V. (2015). CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps. The Cryosphere, 9, 1895-1913. https://doi.org/10.5194/tc-9-1895-2015
Holdsworth, G. (1977). Surge activity on the Barnes Ice Cap. Nature, 269(5629), 588-590.
Hooke, R. L., Johnson, G. W., Brugger, K. A., Hanson, B., & Holdsworth, G. (1987). Changes in mass balance, velocity, and surface profile along a flow line on Barnes Ice Cap, 1970-1984. Canadian Journal of Earth Sciences, 24, 1550-1561.
Jaiser, R., Dethloff, K., Handorf, D., Rinke, A., & Cohen, J. (2012). Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64, 11. https://doi.org/10.3402/tellusa.v64i0.11595
Lenaerts, J. T. M., van Angelen, J. H., van den Broeke, M. R., Gardner, A. S., Wouters, B., & van Meijgaard, E. (2013). Irreversible mass loss of Canadian Arctic Archipelago glaciers. Geophysical Research Letters, 40, 1-5. https://doi.org/10.1002/grl.50214
Lenaerts, J. T. M., van den Broeke, M. R., Angelen, J. H., van Meijgaard, E., & Déry, S. J. (2012). Drifting snow climate of the Greenland ice sheet: A study with a regional climate model. The Cryosphere, 6, 891-899. https://doi.org/10.5194/tc-6-891-2012
Millan, R., Mouginot, J., & Rignot, E. (2017). Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada from 1991 to 2015. Environmental Research Letters, 12(2), 024016. https://doi.org/10.1088/1748-9326/aa5b04
Moholdt, G., Nuth, C., Ove Hagen, J., & Kohler, J. (2010). Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. https://doi.org/10.1016/j.rse.2010.06.008
Mortimer, C. A., Sharp, M., & Wouters, B. (2016). Glacier surface temperatures in the Canadian High Arctic, 2000-15. Journal of Glaciology, 62(235), 963-975. https://doi.org/10.1017/jog.2016.80
Munneke Kuipers, P., van den Broeke, M. R., Lenaerts, J. T. M., Flanner, M. G., Gardner, K. A., & van de Berg, W. J. (2011). A new albedo parameterization for use in climate models over the Antarctic ice sheet. Journal of Geophysical Research, 116, D05114. https://doi.org/10.1029/2010JD015113
Noël, B., Fettweis, X., van de Berg, W. J., van den Broeke, M. R., & Erpicum, M. (2014). Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: A study with the regional climate model MAR. The Cryosphere, 8, 1871-1883. https://doi.org/10.5194/tc-8-1871-2014
Noël, B., van de Berg,W. J., Lhermitte, S.,Wouters, B., Machguth, H., Howat, I., et al. (2017). A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps. Nature Communications, 8, 14730. https://doi.org/10.1038/ncomms14730
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., & van den Broeke, M. R. (2016). A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015). The Cryosphere, 10(5), 2361-2377. https://doi.org/10.5194/tc-10-2361-2016
Noël, B., van de Berg, W. J., van Meijgaard, E., Munneke, P. K., van de Wal, R. S. W., & van den Broeke, M. (2015). Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland Ice Sheet. The Cryosphere, 9, 1831-1844. https://doi.org/10.5194/tc-9-1831-2015
Overland, J. E., & Wang, M. (2010). Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62, 1-9. https://doi.org/10.1111/j.1600-0870.2009.00421.x
Paterson, W. S. B. (Ed.) (1994). The physics of glaciers (3rd ed.). United Kingdom, UK: Butterworth Heinemann Oxford.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., et al. (2014). The Randolph glacier inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537-552. https://doi.org/10.3189/2014JoG13J176
Polashenski, C.M., Dibb, J. E., Flanner,M. G., Chen, J. Y., Courville, Z. R., Lai, A. M., et al. (2015). Neither dust nor black carbon causing apparent albedo decline in Greenland’s dry snow zone Implications for MODIS C5 surface reflectance. Geophysical Research Letters, 42, 9319-9327. https://doi.org/10.1002/2015GL065912
Sharp, M., Burgess, D. O., Cogley, J. G., Ecclestone, M., Labine, C., & Wolken, G. J. (2011a). Extreme melt on Canada’s Arctic ice caps in the 21st century. Geophysical Research Letters, 38, L11501. https://doi.org/10.1029/2011GL047381
Sharp, M., Burgess, D. O., Cogley, J. G., Ecclestone, M., Labine, C., &Wolken, G. J. (2011b). Extreme melt on Canada’s Arctic ice caps in the 21st century. Geophysical Research Letters, 38, L11501. https://doi.org/10.1029/2011GL047381
Undèn, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., et al. (2002). HIRLAM-5, scientific documentation (Tech. Rep.). Norrköping, Sweden: Swedish Meteorological and Hydrological Institute.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., et al. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961-3012.
Van Angelen, J. H., Lenaerts, J. T. M., Lhermitte, S., Fettweis, X., Munneke, P. K., van den Broeke, M. R., et al. (2012). Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: A study with a regional climate model. The Cryosphere, 6, 1175-1186. https://doi.org/10.5194/tc-6-1175-2012
Van Meijgaard, E., van Ulft, L. H., van de Berg, W. J., Bosveld, F. C., van den Hurk, B., Lenderink, G., & Siebesma, A. P. (2008). The KNMI regional atmospheric climate model RACMO version 2.1 (Tech. Rep. 302). De Bilt: Royal Netherlands Meteorological Institute.
Van Wychen, W., Copland, L., Burgess, D. O., Gray, L., & Schaffer, N. (2015). Glacier velocities and dynamic discharge from the ice masses of Baffin Island and Bylot Island, Nunavut, Canada. Canadian Journal of Earth Sciences, 52, 980-989. https://doi.org/10.1139/cjes-2015-0087
Van Wychen, W., Davis, J., Burgess, D. O., Copland, L., Gray, L., Sharp, M., & Mortimer, C. (2016). Characterizing interannual variability of glacier dynamics and dynamic discharge (1999-2015) for the ice masses of Ellesmere and Axel Heiberg Islands, Nunavut, Canada. Journal of Geophysical Research: Earth Surface, 121, 39-63. https://doi.org/10.1002/2015JF003708
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., et al. (2013). Observations: Cryosphere. In T. F. Stocker, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, USA: Cambridge University Press.
White, P. W. (2001). Part IV: Physical processes (CY23R4) (Tech. Rep.): European Centre For Medium-Range Weather Forecasts.
Williamson, S., Sharp, M., Dowdeswell, J., & Benham, T. (2008). Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999-2003. Journal of Glaciology, 54(186), 391-400. https://doi.org/10.3189/002214308785837048
Wouters, B., Martin-Español, A., Helm, V., Flament, T., van Wessem, J. M., Ligtenberg, S. R. M., et al. (2015). Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 348(6237,) 899-903. https://doi.org/10.1126/science.aaa5727
Zdanowicz, C. M., Fischer, D. A., Clark, I., & Lacelle, D. (2002). An ice-marginal δ18O record from Barnes Ice Cap, Baffin Island, Canada. Annals of Glaciology, 35(1), 145-149. https://doi.org/10.3189/172756402781817031
Zdanowicz, C., Smetny-Sowa, A., Fisher, D., Schaffer, N., Copland, L., Eley, J., & Dupont, F. (2012). Summer melt rates on Penny Ice Cap, Baffin Island: Past and recent trends and implications for regional climate. Journal of Geophysical Research, 117, F02006. https://doi.org/10.1029/2011JF002248