Application of PROMICE Q-Transect in situ accumulation and ablation measurements (2000-2017) to constrain mass balance at the southern tip of the Greenland ice sheet
Hermann, Mauro; Box, Jason E.; Fausto, Robert S.et al.
2018 • In Journal of Geophysical Research. Earth Surface, 123 (6), p. 1235 - 1256
[en] With nine southern Greenland ice sheet ablation area locations, the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) “Q-transect” is a source of snow accumulation and ice ablation data spanning 17 years (2000 to present). Snow water equivalence measurements below equilibrium line altitude enable resolving the location and magnitude of an orographic precipitation maximum. Snow depth skillfully predicts snow water equivalence in this region, for which we find no evidence of change 2001-2017. After describing observed accumulation and ablation spatiotemporal patterns, we examine surface mass balance (SMB) in 5.5-km HIRHAM5, 7.5-km Modèle Atmosphèrique Régional (MAR) v3.7, and 1-km Regional Atmospheric Climate Model (RACMO2.3p2) regional climate model (RCM) output. HIRHAM5 and RACMO2.3p2 overestimate accumulation below equilibrium line altitude by 2 times. MAR SMB is closer to observations but lacks a distinct orographic peak. RCM ablation underestimation is attributable to overestimated snowfall (HIRHAM5 and RACMO2.3p2), overestimated bare ice albedo (MAR), and underestimation of downward turbulent heat fluxes. Calibrated ablation area RCM SMB data yield -0.3 ± 0.5 Gt/a SMB of the 559-km2 marine-terminating Sermilik glacier (September 2000 to October 2012). Using Enderlin et al. (2014, https://doi.org/10.1002/2013GL059010) ice discharge data, Sermilik glacier’s total mass balance is -1.3 ± 0.5 Gt/a with interannual variability dominated by SMB. The area specific mass loss is 17 to 20 times greater than the whole ice sheet mass loss after Andersen et al. (2015, https://doi.org/10.1016/j.epsl.2014.10.015) and Colgan et al. (2015, https://doi.org/10.1016/j.rse.2015.06.016), highlighting the Q-transect’s situation in an ice mass loss hot spot.
Box, Jason E. ; Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Fausto, Robert S. ; Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Colgan, William T. ; Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Langen, Peter L. ; Danish Meteorological Institute, Copenhagen, Denmark
Mottram, Ruth ; Danish Meteorological Institute, Copenhagen, Denmark
Wuite, Jan ; Environmental Earth Observation IT GmbH, Innsbruck, Austria
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute forMarine and Atmospheric Research (IMAU), Utrecht University, Utrecht, Netherlands
van den Broeke, Michiel R. ; Institute forMarine and Atmospheric Research (IMAU), Utrecht University, Utrecht, Netherlands
van As, Dirk ; Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Language :
English
Title :
Application of PROMICE Q-Transect in situ accumulation and ablation measurements (2000-2017) to constrain mass balance at the southern tip of the Greenland ice sheet
ETH Zürich - Eidgenössische Technische Hochschule Zürich NESSC - Netherlands Earth System Science Centre
Funding text :
This study is funded by DANCEA (Danish Cooperation for Environment in the Arctic) under the Danish Ministry of Energy, Buildings and Climate through the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and by the Independent Research Fund Denmark grant 4002-00234. Mauro Hermann visiting GEUS for 5 months was supported by a grant from the Excellence Scholarship and Opportunity Programme (ESOP) from Eidgenössische Technische Hochschule (ETH) Zürich. Intellectual and practical support for 2017 fieldwork came from Matthias Jaggi and Martin Schneebeli from the WSL Institut für Schnee und Lawinenforschung (SLF), Davos Switzerland. The stake networks Q1 to Q6 were initiated in September 2013 with financial support from Vice.com. The work was developed under the framework of the Network on Arctic Glaciology of the International Arctic Science Committee (IASC-NAG). Brice Noël and Michiel van den Broeke acknowledge support from the Netherlands Earth System Science Centre (NESSC). We declare no real or perceived financial conflicts of interests for any of the authors. Much of the field data used here are listed in tables and supporting information and can be provided upon request through http://promice.dk. PROMICE station data are available from http://promice.dk/WeatherArchive.html. We thank Þorsteinn Þorsteinsson of the Icelandic Met Office for providing comments on the manuscript. We thank Xavier Fettweis for sharing MAR output and providing constructive input as an external reviewer.
Ahlstrøm, A., Andersen, S. B., Nick, F. M., Reijmer, C. H., van de Wal, R. S. W., & Hubbard, A. (2013). Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments. Earth system science data discussions, 6(1), 27-57.
Ahlstrøm, A. P., Gravesen, P., Andersen, S. B., van As, D., Citterio, M., Fausto, R. S., & Stenseng, L. (2008). A new programme for monitoring the mass loss of the Greenland Ice Sheet. Copenhagen: Denmark.
Andersen, M. L., Stenseng, L., Skourup, H., Colgan, W., Khan, S. A., Kristensen, S. S., & Forsberg, R. (2015). Basin-scale partitioning of Greenland ice sheet mass balance components (2007-2011). Earth and Planetary Science Letters, 409, 89-95.
Andreas, E. L. (1987). A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorology, 38, 159-184.
Andreas, E. L. (2002). Parameterizing scalar transfer over snow and ice: A review. Journal of Hydrometeorology, 3, 417-432.
Bøggild, C. E., & Podlech, S. (2006). Significant thinning of the south Greenland Ice Sheet margin. Weather, 61(4), 102-105.
Box, J. E., Bromwich, D. H., & Bai, L.-S. (2004). Greenland ice sheet surface mass balance for 1991-2000: Application of Polar MM5 mesoscale model and in-situ data. Journal of Geophysical Research, 109, D16105. https://doi.org/10.1029/2003JD004451
Box, J. E., & Colgan,W. (2013). Greenland ice sheet mass balance reconstruction. Part III: Marine ice loss and total mass balance (1840-2010). Journal of Climate, 26, 6990-7002. https://doi.org/10.1175/ JCLI-D-12-00546.1
Box, J. E., Cressie, N., Bromwich, D. H., Jung, J., van den Broeke, M., van Angelen, J. H., et al. (2013). Greenland ice sheet mass balance reconstruction. Part I: Net snow accumulation (1600-2009). Journal of Climate, 26, 3919-3934.
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., & Steffen, K. (2012). Greenland ice she et albedo feedback: Thermodynamics and atmospheric drivers. The Cryosphere, 6(4), 821-839.
Box, J. E., & Steffen, K. (2001). Sublimation estimates for the Greenland ice sheet using automated weather station observations. Journal of Geophysical Research, 106(D24), 33,965-33,982.
Box, J. E., van As, D., & Steffen, K. (2017). Greenland, Canadian and Icelandic land ice albedo grids (2000-2016). Geological Survey of Denmark and Greenland Bulletin, 38, 69-72.
Braithwaite, R. J. (1984). Short notes: Can the mass balance of a glacier be estimated from its equilibrium-line altitude? Journal of Glaciology, 30(106), 364-368.
Brock, B. W., Willis, I. C., & Shaw, M. J. (2006). Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland. Journal of Glaciology, 52, 281-297.
Brun, E., David, P., Sudul, M., & Brunot, G. (1992). A numerical model to simulate snowcover stratigraphy for operational avalanche forecasting. Journal of Glaciology, 38, 13-22.
Burgess, E. W., Forster, R. R., Box, J. E., Mosley-Thompson, E., Bromwich, D. H., Bales, R. C., & Smith, L. C. (2010). A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958-2007). Journal of Geophysical Research, 115, F02004. https://doi.org/10.1029/2009JF001293
Charalampidis, C., van As, D., Langen, P. L., Fausto, R. S., Vandecrux, B., & Box, J. E. (2016). Regional climate-model performance in Greenland firn derived from in-situ observations. Geological Survey of Denmark and Greenland Bulletin, 35, 75-78.
Christensen, O. B., Drews, M., Christensen, J. H., Dethloff, K., Ketelsen, K., Hebestadt, I., & Rinke, A. (2007). The HIRHAM5 regional climate model (Technical Report No. 06-17). Copenhagen: Version 5, Danish Meteorological Institute. available at dmi.dk.
Colgan, W., Abdalati, W., Citterio, M., Csatho, B., Fettweis, X., Luthcke, S., & Stober, M. (2015). Hybrid glacier Inventory, Gravimetry and Altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic. Remote Sensing of Environment, 168, 24-39.
Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., & Meygret, A. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25-36.
ECMWF-IFS (2008). Part IV: Physical processes (CY33R1) (Technical Report). Shinfield Park, Reading, UK: European Center for Medium-Range Weather Forecasts.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh,M. J., Angelen, J. H., & Broeke,M. R. (2014). An improvedmass budget for the Greenland ice sheet. Geophysical Research Letters, 41, 866-872. https://doi.org/10.1002/2013GL059010
Ettema, J., van den Broeke, M. R., van Meijgaard, E., & van de Berg, W. J. (2010). Climate of the Greenland ice sheet using a high-resolution climate model-Part2: Near-surface climate and energy balance. The Cryosphere, 4, 529-544. https://doi.org/10.5194/tc-4-529-2010
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E., & Bales, R. C. (2009). Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophysical Research Letters, 36, L12501. https://doi.org/10.1029/2009GL038110
Fausto, R. S., van As, D., Box, J. E., Colgan, W., Langen, P. L., & Mottram, R. H. (2016). The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012. Geophysical Research Letters, 43, 2649-2658. https://doi.org/10.1002/2016GL067720
Fausto, R. S., van As, D., Ahlstrøm, A. P., Andersen, S. B., Andersen, M. L., Citterio, M., & Weidick, A. (2012). Ablation observations for 2008-2011 from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE). Geological Survey of Denmark and Greenland Bulletin, 26, 73-76.
Fausto, R. S., van As, D., Ahlstrøm, A. P., & Citterio, M. (2012). Assessing the accuracy of Greenland ice sheet surface ablation measurements by pressure transducer. Journal of Glaciology, 58(212), 1144-1150. https://doi.org/10.3189/2012JoG12J075
Fausto, R. S., van As, D., Box, J. E., Colgan, W., & Langen, P. L. (2016). Quantifying the surface energy fluxes in south Greenland during the 2012 high melt episodes using in-situ observations. Frontiers in Earth Science, 4, 82.
Fausto, R. S., van As, D. & PROMICE Project Team (2012). Ablation observations for 2008-2011 from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE). Geological Survey of Denmark and Greenland Bulletin, 26, 73-76.
Fettweis, X. (2007). Reconstruction of the 1979-2006 Greenland ice sheet surface mass balance using the regional climate model MAR. The Cryosphere, 1, 21-40. https://doi.org/10.5194/tc-1-21-2007
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., et al. (2017). Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11, 1015-1033. https://doi.org/10.5194/tc-11-1015-2017
Fettweis, X., Gallée, H., Lefebre, L., & van Ypersele, J.-P. (2005). Greenland surface mass balance simulated by a regional climate model and comparison with satellite derived data in 1990-1991. Climate Dynamics, 24, 623-640. https://doi.org/10.1007/s00382-005-0010-y
Fettweis, X., Hanna, E., Lang, C., Belleflamme, A., Erpicum, M., & Gallée, H. (2013). Brief communication “Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet”. The Cryosphere, 7(1), 241-248.
Galleé, H., Guyomarch, G., & Brun, E. (2001). Impact of the snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary-Layer Meteorology, 99, 1-19.
Gallée, H., & Schayes, G. (1994). Development of a three-dimensional meso-γ primitive equations model. Monthly Weather Review, 122, 671-685.
Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F., & Ohmura, A. (2006). Mass balance of glaciers and ice caps: Consensus estimates for 1961-2004. Geophysical Research Letters, 33, L19501. https://doi.org/10.1029/2006GL027511
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Funder, S., Larsen, N. K., & Nuth, C. (2015). Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 528(7582), 396-400.
Kuipers Munneke, P., van den Broeke, M. R., Lenaerts, J. T. M., Flanner, M. G., Gardner, A. S., & van de Berg, W. J. (2011). A new albedo parameterization for use in climate models over the Antarctic ice sheet. Journal of Geophysical Research, 116, D05114. https://doi.org/10.1029/2010JD015113
Langen, P. L., Fausto, R. S., Vandecrux, B., Mottram, R. H., & Box, J. E. (2017). Liquid water flow and retention on the Greenland Ice Sheet in the regional climate model HIRHAM5: Local and large-scale impacts. Frontiers in Earth Science, 4, 110.
Langen, P. L., Mottram, R. H., Christensen, J. H., Boberg, F., Rodehacke, C. B., Stendel, M., & Petersen, D. (2015). Quantifying energy and mass fluxes controlling Godthåbsfjord freshwater input in a 5-km simulation (1991-2012). Journal of Climate, 28(9), 3694-3713.
Larsen, N. K., Kjr, K. H., Lecavalier, B., Bjørk, A. A., Colding, S., Huybrechts, P., & Olsen, J. (2015). The response of the southern Greenland ice sheet to the Holocene thermal maximum. Geology, 43(4), 291-294.
Lecavalier, B. S., Milne, G. A., Simpson, M. J., Wake, L., Huybrechts, P., Tarasov, L., & Dyke, A. S. (2014). A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews, 102, 54-84.
Lenaerts, J. T. M., van den Broeke, M. R., Angelen, J. H., van Meijgaard, E., & Dery, S. J. (2012). Drifting snow climate of the Greenland ice sheet: A study with a regional climate model. The Cryosphere, 6, 891-899. https://doi.org/10.5194/tc-6-891-2012
Ligtenberg, S. R. M., Helsen, M. M., & van den Broeke, M. R. (2011). An improved semi-empirical model for the densification of Antarctic firn. The Cryosphere, 5, 809-819. https://doi.org/10.5194/ tc-5-809-2011
Lindbäck, K., Pettersson, R., Hubbard, A. L., Doyle, S. H., As, D., Mikkelsen, A. B., & Fitzpatrick, A. A. (2015). Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophysical Research Letters, 42, 7606-7614. https://doi.org/10.1002/2015GL065393
Lucas-Picher, P., Wulff-Nielsen, M., Christensen, J. H., Aoalgeirsdóttir, G., Mottram, R., & Simonsen, S. B. (2012). Very high resolution regional climate model simulations over Greenland: Identifying added value. Journal of Geophysical Research, 117, D02108. https://doi.org/10.1029/2011JD016267
Machguth, H., Thomsen, H. H., Weidick, A., Ahlstrøm, A. P., Abermann, J., Andersen, M. L., et al. (2016). Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. Journal of Glaciology, 62, 861-887.
McConnell, J. R., Mosley-Thompson, E., Bromwich, D. H., Bales, R. C., & Kyne, J. D. (2000). Interannual variations of snow accumulation on the Greenland Ice Sheet (1985-1996): New observations versus model predictions. Journal of Geophysical Research, 105(D3), 4039-4046.
Mernild, S. H., Hanna, E., McConnell, J. R., Sigl, M., Beckerman, A. P., Yde, J. C., et al. (2015). Greenland precipitation trends in a long-term instrumental climate context (1890-2012): Evaluation of coastal and ice core records. International Journal of Climatology, 35, 303-320. https://doi.org/10.1002/joc.3986
Mernild, S. H., & Liston, G. E. (2010). The influence of air temperature inversion on snow melt and glacier surface mass-balance simulations, SW Ammassalik Island, SE Greenland. Journal of Applied Meteorology and Climatology, 49(1), 47-67.
Miège, C., Forster, R. R., Box, J. E., Burgess, E.W., McConnell, J. R., Pasteris, D. R., & Spikes, V. B. (2013). Southeast Greenland high accumulation rates derived from firn cores and ground-penetrating radar. Annals of Glaciology, 54(63), 322-332.
Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M. J., Willis, M., et al. (2016). ArcticDEM: A publically available, high resolution elevation model of the Arctic. EGU General Assembly 2016, held 17-22 April, 2016 in Vienna Austria, id. EPSC2016-8396.
Nagler, T., Rott, H., Hetzenecker, M.,Wuite, J., & Potin, P. (2015). The Sentinel-1 mission: New opportunities for ice sheet observations. Remote Sensing, 7, 9371-9389.
Neff, W., Compo, G. P., Martin Ralph, F., & Shupe, M. D. (2014). Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889. Journal of Geophysical Research: Atmospheres, 119, 6520-6536. https://doi.org/10.1002/2014JD021470
Niwano, M., Aoki, T., Matoba, S., Yamaguchi, S., Tanikawa, T., Kuchiki, K., & Motoyama, H. (2015). Numerical simulation of extreme snowmelt observed at the SIGMA-A site, northwest Greenland, during summer 2012. The Cryosphere, 9, 971-988. https://doi.org/10.5194/tc-9-971-2015
Noël, B., van de Berg,W. J., Lhermitte, S.,Wouters, B., Machguth, H., Howat, I., et al. (2017). A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps. Nature Communications, 8, 14730.
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., & van den Broeke, M. R. (2016). A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015). The Cryosphere, 10(5), 2361-2377.
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2-Part 1: Greenland (1958-2016). The Cryosphere, 12, 811-831. https://doi.org/10.5194/tc-12-811-2018
Nordeng, T. E. (1994). Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics (Tech. Memo. 206). Reading, UK: Eur Centre for Medium-Range Weather Forecasts. Retrieved from https://www.ecmwf.int/en/elibrary/ 11393-extended-versions-convective-parametrization-scheme-ecmwf-and-their-impact-mean
Ohmura, A. (1987). New temperature distribution maps for Greenland. Zeitschrift fur Gletscherkunde und Glaziolgeologie, 23, 1-45.
Ohmura, A., Calanca, P., Wild, M., & Anklin, M. (1999). Precipitation, accumulation and mass balance of the Greenland ice sheet. With 5 figures. Zeitschrift fur Gletscherkunde und Glazialgeologie, 35(1), 1-20.
Ohmura, A., & Reeh, N. (1991). New precipitation and accumulation maps for Greenland. Journal of Glaciology, 37(125), 140-148.
Podlech, S., Mayer, C., & Bøggild, C. E. (2004). Glacier retreat, mass-balance and thinning: Sermilik glacier, South Greenland. Geografiska Annaler, 86A, 305-317.
Rae, J. G. L., Aalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory, J. M., Hewitt, H. T., et al. (2012). Greenland ice sheet surface mass balance: Evaluating simulations and making projections with regional climate models. The Cryosphere, 6, 1275-1294. https://doi.org/10.5194/tc-6-1275-2012
Rignot, E., Box, J. E., Burgess, E., & Hanna, E. (2008). Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys Research Letters, 35, L20502. https://doi.org/10.1029/2008GL035417
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., et al. (2003). The atmospheric general circulation model ECHAM5. Part 1. Model description (Report no. 349). Max-Planck-Institut für Meteorologie (MPI-M).
Schmidt, L. S., Aoalgeirsdóttir, G., Gumundsson, S., Langen, P. L., Pálsson, F., Mottram, R., et al. (2017). The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: Evaluating the surface energy budget in a Regional Climate Model with automatic weather station observations. The Cryosphere, 11, 1665-1684.
Smeets, C. J. P. P., & Van den Broeke, M. R. (2008a). The parameterisation of scalar transfer over rough ice. Boundary-Layer Meteorology, 128(3), 339-355.
Smeets, C. J. P. P., & Van den Broeke, M. R. (2008b). Temporal and spatial variation of momentum roughness length in the ablation zone of the Greenland ice sheet. Boundary-Layer Meteorology, 128, 315-338.
Studinger, M., Koenig, L., Martin, S., & Sonntag, J. (2010). Operation IceBridge: Using instrumented aircraft to bridge the observational gap between ICESat and ICESat-2. In 2010 IEEE International, Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1918-1919). Honolulu, HI: IEEE.
Sturm, M., Tareas, B., Liston, G. E., Derksen, C., Jonas, T., & Lea, J. (2010). Estimating snow water equivalent using snow depth data and climate classes. Journal of Hydrometeorology, 11, 1380-1394.
Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E., & Wouters, B. (2013). Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere, 7(2), 615-630.
Tedesco, M., Mote, T., Fettweis, X., Hanna, E., Jeyaratnam, J., Booth, J. F., et al. (2016). Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nature Communications, 7, 11723.
Tiedtke, M. (1989). A comprehensivemass flux scheme for cumulus parameterization in large-scalemodels. Monthly Weather Review, 117(8), 1779-1800.
Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., et al. (2002). HIRLAM-5 scientific documentation (Scientific Report). Norrkoping, Sweden: Sveriges meteorologiska och hydrologiska institut. Can be downloaded from, http://hirlam.org
Van As, D., Andersen, M. L., Petersen, D., Fettweis, X., Van Angelen, J. H., Lenaerts, J., et al. (2014). Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012). Journal of Glaciology, 60(220), 314-322.
Van As, D., Bøggild, C. E., Nielsen, S., Ahlstrøm, A. P., Fausto, R. S., Podlech, S., & Andersen, M. L. (2009). Climatology and ablation at the South Greenland ice sheet margin from automatic weather station observations. The Cryosphere Discussions, 3(1), 117-158.
Van As, D., Fausto, R. S., Colgan, W. T., Box, J. E., Ahlstrøm, A. P., Andersen, S. B., et al. (2013). Darkening of the Greenland ice sheet due to the melt-albedo feedback observed at PROMICE weather stations. Geological Survey of Denmark and Greenland Bulletin, 28, 69-72.
Van As, D., Hubbard, A. L., Hasholt, B., Mikkelsen, A. B., Van den Broeke, M. R., & Fausto, R. S. (2012). Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations. Cryosphere, 6, 199-209. https: //doi.org/10.5194/tc-6-199-2012
Van Meijgaard, E., van Ulft, L. H., van de Berg, W. J., Bosveld, F. C., van den Hurk, B., Lenderink, G., & Siebesma, A. P. (2008). Technical report 302: The KNMI regional atmospheric climate model RACMO version 2.1. De Bilt: Royal Netherlands Meteorological Institute.
Van Wessem, J. M., Reijmer, C. H., Van de Berg, W. J., Van den Broeke, M. R., Cook, A. J., Van Ulft, L. H., & Van Meijgaard, E. (2015). Temperature and wind climate of the Antarctic Peninsula as simulated by a high-resolution regional atmospheric climate model. Journal of Climate, 28, 7306-7326. https: //doi.org/10.1175/JCLI-D- 15-0060.1
Van de Berg, W. J., & Medley, B. (2016). Brief Communication: Upper-air relaxation in RACMO significantly improves modelled interannual surface mass balance variability in Antarctica. The Cryosphere, 10, 459-463. https: //doi.org/10.5194/tc-10-459-2016
Van de Wal, R. S. W., Boot, W., Smeets, C. J. P. P., Snellen, H., van den Broeke, M. R., & Oerlemans, J. (2012). Twenty-one years of mass balance observations along the K-transect, West Greenland. Earth System Science Data, 4, 31-35.
Van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., et al. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933-1946. https://doi.org/10.5194/tc-10-1933-2016
Vernon, C. L., Bamber, J. L., Box, J. E., van den Broeke, M. R., Fettweis, X., Hanna, E., & Huybrechts, P. (2013). Surface mass balance model intercomparison for the Greenland ice sheet. The Cryosphere, 7, 599-614.
Winsor, K., Carlson, A. E., Caffee, M. W., & Rood, D. H. (2015). Rapid last-deglacial thinning and retreat of the marine-terminating southwestern Greenland ice sheet. Earth and Planetary Science Letters, 426, 1-12.