Arctic; North Atlantic; freshwater budget; Geochemistry and Petrology; Geophysics; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science; Oceanography
Abstract :
[en] The freshwater budget of the Arctic and sub-polar North Atlantic Oceans has been changing due, primarily, to increased river runoff, declining sea ice and enhanced melting of Arctic land ice. Since the mid-1990s this latter component has experienced a pronounced increase. We use a combination of satellite observations of glacier flow speed and regional climate modeling to reconstruct the land ice freshwater flux from the Greenland ice sheet and Arctic glaciers and ice caps for the period 1958-2016. The cumulative freshwater flux anomaly exceeded 6,300 ± 316 km3 by 2016. This is roughly twice the estimate of a previous analysis that did not include glaciers and ice caps outside of Greenland and which extended only to 2010. From 2010 onward, the total freshwater flux is about 1,300 km3/yr, equivalent to 0.04 Sv, which is roughly 40% of the estimated total runoff to the Arctic for the same time period. Not all of this flux will reach areas of deep convection or Arctic and Sub-Arctic seas. We note, however, that the largest freshwater flux anomalies, grouped by ocean basin, are located in Baffin Bay and Davis Strait. The land ice freshwater flux displays a strong seasonal cycle with summer time values typically around five times larger than the annual mean. This will be important for understanding the impact of these fluxes on fjord circulation, stratification, and the biogeochemistry of, and nutrient delivery to, coastal waters.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Bamber, J L ; School of Geographical Sciences University of Bristol Bristol UK
Tedstone, A J ; School of Geographical Sciences University of Bristol Bristol UK
King, M D ; Byrd Polar Research Center Ohio State University Columbus OH USA
Howat, I M ; Byrd Polar Research Center Ohio State University Columbus OH USA
Enderlin, E M ; School of Earth and Climate Sciences University of Maine Orono ME USA
van den Broeke, M R ; Institute for Marine and Atmospheric Research Utrecht University Utrecht Netherlands
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht University Utrecht Netherlands
Language :
English
Title :
Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results.
ERC - European Research Council EU - European Union NERC - Natural Environment Research Council NESSC - Netherlands Earth System Science Centre
Funding text :
JLB was supported by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement 69418. JLB and AJT were supported by NERC grant NE/M021025/1. MvdB acknowledges support from the Netherlands Earth System Science Centre (NESSC). The authors would like to thank the editor, Fiamma Straneo and an anonymous referee for their constructive comments. The data set described here is available from the British Oceanographic Data Centre (www. bodc.ac.uk) and also directly from the corresponding author. The DOI is 10.5285/643aa9bc-bcd6–45ad-e053- 6c86abc07da0.
An, L., Rignot, E., Elieff, S., Morlighem, M., Millan, R., Mouginot, J., et al. (2017). Bed elevation of Jakobshavn Isbræ, West Greenland, from high-resolution airborne gravity and other data. Geophysical Research Letters, 44, 3728–3736. https://doi.org/10.1002/2017GL073245
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., & Rignot, E. (2012). Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophysical Research Letters, 39, L19501. https://doi.org/10.1029/2012GL052552
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., & Charette, M. A. (2013). Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geoscience, 6(4), 274–278. https://doi.org/10.1038/ngeo1746
Bolch, T., Sandberg Sørensen, L., Simonsen, S. B., Mölg, N., Machguth, H., Rastner, P., & Paul, F. (2013). Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophysical Research Letters, 40, 875–881. https://doi.org/10.1002/grl.50270
Boning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., & Bamber, J. L. (2016). Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience, 9(7), 523–527. https://doi.org/10.1038/ngeo2740
Carmack, E. C., Yamamoto-Kawai, M., Haine, T. W. N., Bacon, S., Bluhm, B. A., Lique, C., et al. (2016). Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research: Biogeosciences, 121, 675–717. https://doi.org/10.1002/2015JG003140
Carret, A., Johannessen, J. A., Andersen, O. B., Ablain, M., Prandi, P., Blazquez, A., & Cazenave, A. (2017). Arctic Sea Level During the Satellite Altimetry Era. Survey of Geophysics, 38(1), 251–275. https://doi.org/10.1007/s10712-016-9390-2
de la Guardia, L. C., Hu, X. M., & Myers, P. G. (2015). Potential positive feedback between Greenland Ice Sheet melt and Baffin Bay heat content on the west Greenland shelf. Geophysical Research Letters, 42, 4922–4930. https://doi.org/10.1002/2015GL064626
Dukhovskoy, D. S., Myers, P. G., Platov, G., Timmermans, M.-L., Curry, B., Proshutinsky, A., et al. (2016). Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers. Journal of Geophysical Research: Oceans, 121, 877–907. https://doi.org/10.1002/2015JC011290
Enderlin, E. M., Hamilton, G. S., Straneo, F., & Sutherland, D. A. (2016). Iceberg meltwater fluxes dominate the freshwater budget in Greenland's iceberg-congested glacial fjords. Geophysical Research Letters, 43, 11287–11294. https://doi.org/10.1002/2016GL070718
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M. J., van Angelen, J. H., & van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41, 866–872. https://doi.org/10.1002/2013GL059010
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., et al. (2017). Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11(2), 1015–1033. https://doi.org/10.5194/tc-11-1015-2017
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., & Gallée, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7(2), 469–489. https://doi.org/10.5194/tc-7-469-2013
Gardner, A. S., Moholdt, G., Wouters, B., Wolken, G. J., Burgess, D. O., Sharp, M. J., et al. (2011). Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473(7347), 357–360. https://doi.org/10.1038/nature10089
Gerdes, R., Hurlin, W., & Griffies, S. M. (2006). Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Modelling, 12(3–4), 416–435.
Gillard, L. C., Hu, X., Myers, P. G., & Bamber, J. L. (2016). Meltwater pathways from marine terminating glaciers of the Greenland ice sheet. Geophysical Research Letters, 43, 10873–10882. https://doi.org/10.1002/2016GL070969
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu G., Chassignet, E. P., et al. (2009). Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling, 26(1–2), 1–46.
Grivault, N., Hu, X. M., & Myers, P. G. (2017). Evolution of Baffin Bay water masses and transports in a numerical sensitivity experiment under enhanced Greenland Melt. Atmosphere-Ocean, 55(3), 169–194. https://doi.org/10.1080/07055900.2017.1333950
Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., et al. (2015). Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125, 13–35. https://doi.org/10.1016/j.gloplacha.2014.11.013
Hawkings, J., Wadham, J., Tranter, M., Telling, J., Bagshaw, E., Beaton, A., et al. (2016). The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Global Biogeochemical Cycles, 30, 191–210. https://doi.org/10.1002/2015GB005237
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D'Amore, D., & Scott, D. (2009). Glaciers as a source of ancient and labile organic matter to the marine environment. Nature, 462(7276), 1044–1047. https://doi.org/10.1038/nature08580
Howat, I. M., Negrete, A., & Smith, B. E. (2014). The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. The Cryosphere, 8(4), 1509–1518. https://doi.org/10.5194/tc-8-1509-2014
Hu, A., Meehl, G. A., Han, W., & Yin, J. (2009). Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophysical Research Letters, 36, L10707. https://doi.org/10.1029/2009GL037998
IHO (1953). Limits of oceans & seas (Special Publication No 23, 10 pp.). International Hydrographic Organization.
Jungclaus, J. H., Haak, H., Esch, M., Roeckner, E., & Marotzke, J. (2006). Will Greenland melting halt the thermohaline circulation? Geophysical Research Letters, 33, L17708. https://doi.org/10.1029/2006GL026815
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E., Funder, S., et al. (2015). Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 528(7582), 396. https://doi.org/10.1038/nature16183
Marsh, R., Desbruyères, D., Bamber, J. L., de Cuevas, B. A., Coward, A. C., & Aksenov, Y. (2010). Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Science, 6(3), 749–760. https://doi.org/10.5194/os-6-749-2010
Marsh, R., Ivchenko, V. O., Skliris, N., Alderson, S., Bigg, G. R., Madec, G., et al. (2015). NEMO–ICB (v1.0): Interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geoscientific Model Development, 8(5), 1547–1562. https://doi.org/10.5194/gmd-8-1547-2015
Merino, N., Le Sommer, J., Durand, G., Jourdain, N. C., Madec, G., Mathiot, P., & Tournadre, J. (2016). Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice. Ocean Modelling, 104, 99–110. https://doi.org/10.1016/j.ocemod.2016.05.001
Millan, R., Mouginot, J., & Rignot, E. (2017). Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015. Environmental Research Letters, 12(2), 024016.
Moon, T., Joughin, I., Smith, B., & Howat, I. (2012). 21st-Century evolution of greenland outlet glacier velocities. Science, 336(6081), 576–578. https://doi.org/10.1126/science.1219985
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., & Larour, E. (2014). Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nature Geoscience. https://doi.org/10.1038/ngeo2167
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2017). BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation. Geophysical Research Letters, 44(7), 418–422. https://doi.org/10.1002/2017GL074954
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., et al. (2012). The extreme melt across the Greenland ice sheet in 2012. Geophysical Research Letters, 39, L20502. https://doi.org/10.1029/2012GL053611
Noël, B., Jan van de Berg, W., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2017). Modelling the climate and surface mass balance of polar ice sheets using RACMO2, Part 1: Greenland (1958–2016). Cryosphere Discussions, 2017, 1–35. https://doi.org/10.5194/tc-2017-201
Noel, B., van De Berg, W. J., van Meijgaard, E., Munneke, P. K., van De Wal, R. S. W., & van den Broeke, M. R. (2015). Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland Ice Sheet. The Cryosphere, 9(5), 1831–1844. https://doi.org/10.5194/tc-9-1831-2015
Peterson, B. J., McClelland, J., Curry, R., Holmes, R. M., Walsh, J. E., & Aagaard, K. (2006). Trajectory shifts in the Arctic and subarctic freshwater cycle. Science, 313(5790), 1061–1066. https://doi.org/10.1126/science.1122593
Proshutinsky, A., Dukhovskoy, D., Timmermans, M.-L., Krishfield, R., & Bamber, J. L. (2015). Arctic circulation regimes. Philosophical Transactions of Royal Society A: Mathematical, Physical, and Engineering Sciences, 373(2052), https://doi.org/10.1098/rsta.2014.0160
Prowse, T., Bring, A., Mård, J., Carmack, E., Holland, M., Instanes, A., et al. (2015). Arctic freshwater synthesis: Summary of key emerging issues. Journal of Geophysical Research: Biogeosciences, 120, 1887–1893. https://doi.org/10.1002/2015JG003128
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5(5), 475–480. https://doi.org/10.1038/nclimate2554
Rignot, E., Box, J. E., Burgess, E., & Hanna, E. (2008). Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters, 35, L20502. https://doi.org/10.1029/2008GL035417
Rignot, E., & Mouginot, J. (2012). Ice flow in Greenland for the International Polar Year 2008–2009. Geophysical Research Letters, 39, L11501. https://doi.org/10.1029/2012GL051634
Robson, J., Ortega, P., & Sutton, R. (2016). A reversal of climatic trends in the North Atlantic since 2005. Nature Geoscience, 9, 513. https://doi.org/10.1038/ngeo2727
Snyder, J. P. (1987). Map projections–A working manual. Washington, DC: USGPO.
Sole, A. J., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., King, M. A., Burke, M. J., & Joughin, I. (2011). Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology. Journal of Geophysical Research, 116, F03014. https://doi.org/10.1029/2010JF001948
Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C., Vage, K., & Stearns, L. A. (2011). Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geoscience, 4(5), 322–327. https://doi.org/10.1038/NGEO1109
Straneo, F., & Heimbach, P. (2013). North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504(7478), 36–43. https://doi.org/10.1038/nature12854
Swift, J. H., Aagaard, K., Timokhov, L., & Nikiforov, E. G. (2005). Long-term variability of Arctic Ocean waters: Evidence from a reanalysis of the EWG data set. Journal of Geophysical Research, 110, C03012. https://doi.org/10.1029/2004JC002312
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J., et al. (2009). Partitioning Recent Greenland Mass Loss. Science, 326(5955), 984–986. https://doi.org/10.1126/science.1178176
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., et al. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10(5), 1933–1946. https://doi.org/10.5194/tc-10-1933-2016
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., & Mote, P. (2013). Observations: Cryosphere. In T. F. Stocker et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 317–382). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.012
Yang, Q., Dixon, T. H., Myers, P. G., Bonin, J., Chambers, D., van den Broeke, M. R., et al. (2016). Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nature Communications, 7, 10525. https://doi.org/10.1038/ncomms10525
Zuo, H., Balmaseda, M. A., & Mogensen, K. (2015). The new eddy-permitting ORAP5 ocean reanalysis: Description, evaluation and uncertainties in climate signals. Climate Dynamics, 49(3), 791–811. https://doi.org/10.1007/s00382-015-2675-1