Greenland; bathymetry; glaciology; mass conservation; multibeam echo sounding; radar echo sounding; Multibeams; Radar echoes; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Morlighem, M ; Department of Earth System Science University of California Irvine CA USA
Williams, C N; Bristol Glaciology Centre, School of Geographical Sciences University of Bristol Bristol UK ; Now at British Geological Survey Nottingham UK
Rignot, E ; Department of Earth System Science University of California Irvine CA USA ; Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
An, L ; Department of Earth System Science University of California Irvine CA USA
Arndt, J E ; Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
Bamber, J L ; Bristol Glaciology Centre, School of Geographical Sciences University of Bristol Bristol UK
Catania, G ; Institute of Geophysics University of Texas at Austin Austin TX USA
Chauché, N ; Department of Geography and Earth Science Aberystwyth University Aberystwyth UK
Dowdeswell, J A; Scott Polar Research Institute University of Cambridge Cambridge UK
Dorschel, B ; Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
Fenty, I ; Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
Hogan, K; British Antarctic Survey Natural Environment Research Council Cambridge UK
Howat, I ; Byrd Polar and Climate Research Center Ohio State University Columbus OH USA
Hubbard, A; Department of Geography and Earth Science Aberystwyth University Aberystwyth UK ; Centre for Arctic Gas Hydrate, Environment and Climate, Department of GeosciencesUiT The Arctic University of Norway Tromsø Norway
Jakobsson, M ; Department of Geology and Geochemistry Stockholm University Stockholm Sweden
Jordan, T M; Bristol Glaciology Centre, School of Geographical Sciences University of Bristol Bristol UK
Kjeldsen, K K ; Centre for GeoGenetics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark ; Department of Earth Sciences University of Ottawa Ottawa Ontario Canada ; Department of Geodesy, DTU Space, National Space Institute Technical University of Denmark Kongens Lyngby Denmark
Millan, R ; Department of Earth System Science University of California Irvine CA USA
Mayer, L ; Center for Coastal and Ocean Mapping University of New Hampshire Durham NH USA
Mouginot, J ; Department of Earth System Science University of California Irvine CA USA
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht Utrecht University Utrecht Netherlands
O'Cofaigh, C; Department of Geography Durham University Durham UK
Palmer, S ; College of Life and Environmental Sciences University of Exeter Exeter UK
Rysgaard, S ; Centre for Earth Observation Science, Department of Environment and Geography University of Manitoba Winnipeg Manitoba Canada ; Greenland Institute of Natural Resources Nuuk Greenland ; Arctic Research Centre Aarhus University Aarhus Denmark
Seroussi, H ; Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
Siegert, M J ; Grantham Institute and Department of Earth Science and Engineering Imperial College London London UK
Slabon, P ; Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
Straneo, F ; Department of Physical Oceanography Woods Hole Oceanographic Institution Woods Hole MA USA
van den Broeke, M R ; Institute for Marine and Atmospheric Research Utrecht Utrecht University Utrecht Netherlands
Weinrebe, W; Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
Wood, M ; Department of Earth System Science University of California Irvine CA USA
Zinglersen, K B ; Greenland Institute of Natural Resources Nuuk Greenland
NASA - National Aeronautics and Space Administration NERC - Natural Environment Research Council
Funding text :
This work was performed at the University of California, Irvine, under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program (NNX15AD55G), and the National Science Foundation's ARCSS program (1504230), and in cooperation with the University of Bristol as part of the Basal Properties of the Greenland Ice Sheet project (BPoG, NERC grant NE/M000869/1). We thank the Danish Geodata Agency and the Greenland Institute of Natural Resources for providing bathymetry data in the fjord of Narsap Sermia. We also thank David and Denise Holland, from New York University, for providing bathymetry data in Illulisat Icefjord, and Don Blankenship and Duncan Young, from the University of Texas, Institute for Geophysics, for their participation in collecting the HiCARS data. Finally, we would like to thank GRISO RCN (Greenland Ice Sheet Ocean Research Coordination Network) for their help in finding available bathymetry data. BedMachine v3 will be available at the National Snow and Ice Data Center (NSIDC): http://nsidc.org/data/IDBMG4.This work was performed at the University of California, Irvine, under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program (NNX15AD55G), and the National Science Foundation’s ARCSS program (1504230), and in cooperation with the University of Bristol as part of the Basal Properties of the Greenland Ice Sheet project (BPoG, NERC grant NE/M000869/1). We thank the Danish Geodata Agency and the Greenland Institute of Natural Resources for providing bathymetry data in the fjord of Narsap Sermia. We also thank David and Denise Holland, from New York University, for providing bathymetry data in Illulisat Icefjord, and Don Blankenship and Duncan Young, from the University of Texas, Institute for Geophysics, for their participation in collecting the HiCARS data. Finally, we would like to thank GRISO RCN (Greenland Ice Sheet Ocean Research Coordination Network) for their help in finding available bathymetry data. BedMachine v3 will be available at the National Snow and Ice Data Center (NSIDC): http://nsidc.org/data/IDBMG4.
Arndt, J. E., Jokat, W., Dorschel, B., Myklebust, R., Dowdeswell, J. A., & Evans, J. (2015). A new bathymetry of the northeast Greenland continental shelf: Constraints on glacial and other processes. Geochemistry, Geophysics, Geosystems, 16, 3733–3753. https://doi.org/10.1002/2015GC005931
Aschwanden, A., Fahnestock, M., & Truffer, M. (2016). Complex Greenland outlet glacier flow captured. Nature Communications, 7, 1–8. https://doi.org/10.1038/ncomms10524
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I.,…Steinhage, D. (2013). A new bed elevation dataset for Greenland. Cryosphere, 7, 499–510. https://doi.org/10.5194/tc-7-499-2013
Bendtsen, J., Mortensen, J., Lennert, K., Ehn, J. K., Boone, W., Galindo, V.,…Rysgaard, S. (2017). Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N). Scientific Reports, 7(1), 4941. https://doi.org/10.1038/s41598
Bendtsen, J., Mortensen, J., Lennert, K., & Rysgaard, S. (2015). Heat sources for glacial ice melt in a west Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge. Geophysical Research Letters, 42, 4089–4095. https://doi.org/10.1002/2015GL063846
Bjørk, A. A., Kjaer, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen, K. K., & Andresen, C. S. (2012). An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nature Geoscience, 5(6), 427–432. https://doi.org/10.1038/NGEO1481
Chauché, N., Hubbard, A., Gascard, J.-C., Box, J. E., Bates, R., & Koppes, M. (2014). Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere, 8(4), 1457–1468. https://doi.org/10.5194/tc-8-1457-2014
Deutsch, C., & Journel, A. (1997). GSLIB. Geostatistical software library and user's guide (2nd Ed.). New York: Oxford University Press.
Dowdeswell, J. A., Batchelor, C. L., Hogan, K. A., & Schenke, H. W. (2016). Nordvestfjord: A major east Greenland fjord system. Atlas of submarine glacial landforms: Modern, quaternary and ancient (Vol. 46, pp. 43–44). London, Memoirs: Geological Society. https://doi.org/10.1144/M46.40
Dowdeswell, J. A., & Evans, S. (2004). Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Reports on Progress in Physics, 67(10), 1821–1861.
Dowdeswell, J. A., Hogan, K. A., Cofaigh, C. Ó., Fugelli, E. M. G., Evans, J., & Noormets, R. (2014). Late Quaternary ice flow in a west Greenland fjord and cross-shelf trough system: Submarine landforms from Rink Isbrae to Uummannaq shelf and slope. Quaternary Science Reviews, 92(SI), 292–309.
Durand, G., Gagliardini, O., Favier, L., Zwinger, T., & le Meur, E. (2011). Impact of bedrock description on modeling ice sheet dynamics. Geophysical Research Letters, 38, L20501. https://doi.org/10.1029/2011GL048892
Enderlin, E. M., Howat, I. M., & Vieli, A. (2013). High sensitivity of tidewater outlet glacier dynamics to shape. Cryosphere, 7(3), 1007–1015. https://doi.org/10.5194/tc-7-1007-2013
Evans, S., & Robin, G. d. Q. (1966). Glacier depth-sounding from air. Nature, 210(5039), 883–885. https://doi.org/10.1038/210883a0
Freire, F., Gyllencreutz, R., Greenwood, S. L., Mayer, L., Egilsson, A., Thorsteinsson, T., & Jakobsson, M. (2015). High resolution mapping of offshore and onshore glaciogenic features in metamorphic bedrock terrain, Melville Bay, northwestern Greenland. Geomorphology, 250, 29–40. https://doi.org/10.1016/j.geomorph.2015.08.011
Fried, M. J., Catania, G. A., Bartholomaus, T. C., Duncan, D., Davis, M., Stearns, L. A.,…Sutherland, D. (2015). Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophysical Research Letter, 42, 9328–9336. https://doi.org/10.1002/2015GL065806
Holland, D., Thomas, R., De Young, B., Ribergaard, M., & Lyberth, B. (2008). Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience, 1(10), 659–664. https://doi.org/10.1038/ngeo316
Holt, J., Peters, M., Kempf, S., Morse, D., & Blankenship, D. (2006). Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: Implications for orbital sounding of Mars. Journal of Geophysical Research, 111, 1–13. https://doi.org/10.1029/2005JE002525
Howat, I. M., Negrete, A., & Smith, B. E. (2014). The Greenland Ice Mapping Project (GIMP) land classification and surface elevation datasets. Cryosphere, 8(4), 1509–1518. https://doi.org/10.5194/tc-8-1509-2014
Jakobsson, M., Gyllencreutz, R., Mayer, L. A., Dowdeswell, J. A., Canals, B. J., Todd, B. J.,…Larter, R. D. (2016). Mapping submarine glacial landforms using acoustic methods. Atlas of submarine glacial landforms: Modern, quaternary and ancient (Vol. 46, pp. 17–40). London, Memoirs: Geological Society. https://doi.org/10.1144/M46.182
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B.,…Weatherall, P. (2012). The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophysical Research Letters, 39, 1–6. https://doi.org/10.1029/2012GL052219
Jezek, K., Wu, X., Paden, J., & Leuschen, C. (2013). Radar mapping of Isunnguata Sermia, Greenland. Journal of Glaciology, 59(218), 1135–1146. https://doi.org/10.3189/2013JoG12J248
Kessler, M. A., Anderson, R. S., & Briner, J. P. (2008). Fjord insertion into continental margins driven by topographic steering of ice. Nature Geoscience, 1(6), 365–369. https://doi.org/10.1038/ngeo201
Khan, S. A., Kjaer, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K.,…Muresan, I. S. (2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change, 4(4), 292–299. https://doi.org/10.1038/NCLIMATE2161
Kjeldsen, K. K., Weinrebe, R. W., Bendtsen, J., Bjørk, A. A., & Kjær, K. H. (2017). Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland. Earth System Science Data, 9(2), 589–600. https://doi.org/10.5194/essd-9-589-2017
Leuschen, C., Gogineni, P., Rodriguez-Morales, F., Paden, J., & Allen, C. (2010 updated 2016). IceBridge MCoRDS L2 Ice Thickness, 2009–2016. Boulder, CO: NASA DAAC at the National Snow and Ice Data Center. [Accessed April 2017].
Lindbäck, K., Pettersson, R., Doyle, S. H., Helanow, C., Jansson, P., Kristensen, S. S.,…Hubbard, A. L. (2014). High-resolution ice thickness and bed topography of a land-terminating section of the Greenland ice sheet. Earth System Science Data, 6(2), 331—338. https://doi.org/10.5194/essd-6-331-2014
Mix, A. C., Jakobsson, M., & the Petermann-2015 Scientific Party (2015). Petermann-2015 expedition launches international collaboration in Arctic science (Tech. Rep.). Fairbanks, AK: Arctic Research Consortium of the United States. Retrieved from: https://www.arcus.org/files/newsletter/pdf/wta2015_v19i3.pdf
Morlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert, A., & Rebuffi, S.-A. (2016). Modeling of Store Gletscher's calving dynamics, west Greenland, in response to ocean thermal forcing. Geophysical Research Letters, 43, 2659–2666. https://doi.org/10.1002/2016GL067695
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., & Larour, E. (2014a). Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nature Geoscience, 7(6), 418–422. https://doi.org/10.1038/ngeo2167
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., & Larour, E. (2014b). High-resolution ice thickness mapping in south Greenland. Annals of Glaciology, 55(67), 64–70. https://doi.org/10.3189/2014AoG67A088
Morlighem, M., Rignot, E., Mouginot, J., Wu, X., Seroussi, H., Larour, E., & Paden, J. (2013). High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data. Journal of Glaciology, 59(218), 1015–1023. https://doi.org/10.3189/2013JoG12J235
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., & Aubry, D. (2011). A mass conservation approach for mapping glacier ice thickness. Geophysical Research Letters, 38(L19503), 1–6. https://doi.org/10.1029/2011GL048659
Morlighem, M., Rignot, E., & Willis, J. (2016). Improving bed topography mapping of Greenland glaciers using NASA's Oceans Melting Greenland (OMG) data. Oceanography, 29(4), 62–71. https://doi.org/10.5670/oceanog.2016.99
Motyka, R. J., Cassotto, R., Truffer, M., Kjeldsen, K. K., Van As, D., Korsgaard, N. J.,…Rysgaard, S. (2017). Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia's retreat in SW Greenland. Journal of Glaciology, 63(238), 288–308. https://doi.org/10.1017/jog.2016.138
Mouginot, J., Rignot, E., Scheuchl, B., Fenty, I., Khazendar, A., Morlighem, M.,…Paden, J. (2015). Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science, 350(6266), 1357–1361. https://doi.org/10.1126/science.aac7111
Mouginot, J., Rignot, E., Scheuchl, B., & Millan, R. (2017). Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote Sensing, 9(4), 364. https://doi.org/10.3390/rs9040364
Nixdorf, U., Steinhage, D., Meyer, U., Hempel, L., Jenett, M., Wachs, P., & Miller, H. (1999). The newly developed airborne radio-echo sounding system of the AWI as a glaciological tool. Annals of Glaciology, 29, 231–238. https://doi.org/10.3189/172756499781821346
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., & van den Broeke, M. R. (2016). A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). Cryosphere, 10(5), 2361—2377. https://doi.org/10.5194/tc-10-2361-2016
Ó Cofaigh, C., Dowdeswell, J. A., Jennings, A. E., Hogan, K. A., Kilfeather, A., Hiemstra, J. F.,…Moros, M. (2013). An extensive and dynamic ice sheet on the west Greenland shelf during the last glacial cycle. Geology, 41(2), 219–222.
OMG Mission (2016). Bathymetry (sea floor depth) data from the ship-based bathymetry survey. Ver. 0.1. OMG SDS, CA, USA. Dataset Retrieved from: https://doi.org/10.5067/OMGEV-BTYSS. Accessed 2016-08-01.
Peters, M. E., Blankenship, D. D., Carter, S. P., Kempf, S. D., Young, D. A., & Holt, J. W.(2007). Along-track focusing of airborne radar sounding data from West Antarctica for improving basal reflection analysis and layer detection. IEEE Transactions on Geoscience and Remote Sensing, 45(9), 2725–2736. https://doi.org/10.1109/TGRS.2007.897416
Peters, M., Blankenship, D., & Morse, D. (2005). Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams. Journal of Geophysical Research, 110, B06303. https://doi.org/10.1029/2004JB003222
Post, A. (1975). Preliminary hydrography and historic terminal changes of Columbia Glacier, Alaska (Tech. Rep.) Reston, VA: US Geological Survey Hydrologic Investigations Atlas.
Raney, K. (2010). IceBridge PARIS L2 Ice Thickness, version 1.0. Boulder, CO: NASA DAAC at the National Snow and Ice Data Center. https://doi.org/10.5067/OMEAKG6GIJNB
Rignot, E., Fenty, I., Menemenlis, D., & Xu, Y. (2012). Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Annals of Glaciology, 53(60, 2), 257–266. https://doi.org/10.3189/2012AoG60A136
Rignot, E., Fenty, I., Xu, Y., Cai, C., & Kemp, C. (2015). Undercutting of marine-terminating glaciers in west Greenland. Geophysical Research Letters, 42(14), 5909–5917. https://doi.org/10.1002/2015GL064236
Rignot, E., Fenty, I., Xu, Y., Cai, C., Velicogna, I., Ó Cofaigh, C.,…Duncan, D. (2016). Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland. Geophysical Research Letters, 43(6), 2667–2674.
Rignot, E., & Mouginot, J. (2012). Ice flow in Greenland for the international polar year 2008–2009. Geophysical Research Letters, 39, L11501. https://doi.org/10.1029/2012GL051634
Rodriguez-Morales, F., Gogineni, S., Leuschen, C., Paden, J., Li, J., Lewis, C.,…Panton, C. (2014). Advanced multifrequency radar instrumentation for polar research. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2824–2842. https://doi.org/10.1109/TGRS.2013.2266415
Rysgaard, S., Vang, T., Stjernholm, M., Rasmussen, B., Windelin, A., & Kiilsholm, S. (2003). Physical conditions, carbon transport, and climate change impacts in a northeast Greenland fjord. Arctic, Antarctic, and Alpine Research, 35(3), 301–312. https://doi.org/10.1657/1523-0430(2003)035[0301:PCCTAC]2.0.CO;2
Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem, M., & Steinhage, D. (2016). A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth System Science Data, 8(2), 543–557. https://doi.org/10.5194/essd-8-543-2016
Schumann, K., Voelker, D., & Weinrebe, W. R. (2012). Acoustic mapping of the Ilulissat Ice Fjord mouth, west Greenland. Quaternary Science Reviews, 40, 78–88.
Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H., & Kristensen, S. S. (2011). Ice flux divergence anomalies on 79north Glacier, Greenland. Geophysical Research Letters, 38, L09501. https://doi.org/10.1029/2011GL047338
Slabon, P., Dorschel, B., Jokat, W., Myklebust, R., Hebbeln, D., & Gebhardt, C. (2016). Greenland ice sheet retreat history in the northeast Baffin Bay based on high-resolution bathymetry. Quaternary Science Reviews, 154, 182–198. https://doi.org/10.1016/j.quascirev.2016.10.022
Stevens, L. A., Straneo, F., Das, S. B., Plueddemann, A. J., Kukulya, A. L., & Morlighem, M. (2016). Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations. Cryosphere, 10(1), 417–432. https://doi.org/10.5194/tc-10-417-2016
Straneo, F., Hamilton, G. S., Stearns, L. A., & Sutherland, D. A. (2016). Connecting the Greenland ice sheet and the ocean, a case study of Helheim Glacier and Sermilik Fjord. Oceanography, 29(4, SI), 34–45.
Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson, F., Hammill, M. O.,…Rosing-Asvid, A. (2010). Rapid circulation of warm subtropical waters in a major glacial fjord in east Greenland. Nature Geoscience, 3(3), 182–186. https://doi.org/10.1038/NGEO764
Straneo, F., & Heimbach, P. (2013). North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504, 36–43.
Straneo, F., Sutherland, D. A., Holland, D., Gladish, C., Hamilton, G. S., Johnson, H. L.,…Koppes, M. (2012). Characteristics of ocean waters reaching Greenland's glaciers. Annals of Glaciology, 53(60, 2), 202–210.
Sugiyama, S., Sakakibara, D., Tsutaki, S., Maruyama, M., & Sawagaki, T. (2015). Glacier dynamics near the calving front of Bowdoin Glacier, northwestern Greenland. Journal of Glaciology, 61(226), 223–232. https://doi.org/10.3189/2015JoG14J127
Sutherland, D. A., & Pickart, R. S. (2008). The east Greenland coastal current: Structure, variability, and forcing. Progress in Oceanography, 78(1), 58–77. https://doi.org/10.1016/j.pocean.2007.09.006
Sutherland, D. A., Straneo, F., & Pickart, R. S. (2014). Characteristics and dynamics of two major Greenland glacial fjords. Journal of Geophysical Research: Oceans, 119(6), 3767–3791. https://doi.org/10.1002/2013JC009786
Thomsen, H., Reeh, N., Olesen, O., Boggild, C., Starzer, W., Weidick, A., & Higgins, A. (1997). The Nioghalvfjerdsfjorden glacier project, north-east Greenland: A study of ice sheet response to climatic change. Geology of Greenland Survey Bulletin, 179, 95–103.
Weertman, J. (1974). Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology, 13(67), 3–11.
Weinrebe, R. W., KuijpKui, A., Klaucke, I., & Fink, M. (2009). Multibeam bathymetry surveys in fjords and coastal areas of west-Greenland. Eos Transactions American Geophysical Union, 90(52), Fall Meeting Supplement, Abstract OS21A–1152.
Williams, C. N., Cornford, S. L., Jordan, T. M., Dowdeswell, J. A., Siegert, M. J., Clark, C. D.,…Bamber, J. L. (2017). Generating synthetic fjord bathymetry for coastal Greenland. Cryosphere, 11(1), 363–380. https://doi.org/10.5194/tc-11-363-2017
Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., & Flexas, M. M. (2013). Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophysical Research Letters, 40(17), 4648–4653. https://doi.org/10.1002/grl.50825