[en] Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt-1, or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584 CC Utrecht, The Netherlands
van de Berg, W J; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584 CC Utrecht, The Netherlands
Lhermitte, S ; Department of Geoscience and Remote Sensing, Delft University of Technology, 2600 AA Delft, The Netherlands
Wouters, B; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584 CC Utrecht, The Netherlands
Machguth, H; Department of Geography, University of Zürich, CH-8006 Zürich, Switzerland ; Department of Geosciences, University of Fribourg, CH-1700 Fribourg, Switzerland ; Geological Survey of Denmark and Greenland GEUS, 1350 København K, Denmark
Howat, I ; Byrd Polar Research Center and School of Earth Sciences and Department of Geography, Ohio State University, Columbus, Ohio 43210, USA
Citterio, M; Geological Survey of Denmark and Greenland GEUS, 1350 København K, Denmark
Moholdt, G; Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
Lenaerts, J T M; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584 CC Utrecht, The Netherlands
van den Broeke, M R; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584 CC Utrecht, The Netherlands
Language :
English
Title :
A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps.
Publication date :
31 March 2017
Journal title :
Nature Communications
eISSN :
2041-1723
Publisher :
Nature Publishing Group, Basingstoke, Hampshire, England
Vaughan, D. G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, 2013).
Bolch, T. et al. Mass loss of Greenland's glaciers and ice caps 2003-2008 revealed from ICESat laser altimetry data. Geophys. Res. Lett. 40, 875-881 (2013).
Machguth, H. et al. The future sea-level rise contribution of Greenland's glaciers and ice caps. Environ. Res. Lett. 8, 025005 (2013).
Machguth, H. et al. Greenland surface mass balance observations from the ice sheet ablation area and local glaciers. J. Glaciol. 62, 1-27 (2016).
Marzeion, B. A., Jarosch, A. H. & Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295-1322 (2012).
Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852-857 (2013).
Van Angelen, J. H., van den Broeke, M. R., Wouters, B. & Lenaerts, J. T. M. Contemporary (1969-2012) evolution of the climate and surface mass balance of the Greenland ice sheet. Surv. Geophys. 35, 1155-1174 (2014).
Burgess, E. W. et al. A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958-2007). J. Geophys. Res. 115, F02004 (2010).
Ettema, J., van den Broeke, M. R., van Meijgaard, E. & van de Berg, W. J. Climate of the Greenland ice sheet using a high-resolution climate model-Part 2: Near-surface climate and energy balance. Cryosphere 4, 529-544 (2010).
Ettema, J. et al. Climate of the Greenland ice sheet using a high-resolution climate model-Part 1: evaluation. Cryosphere 4, 511-527 (2010).
Fettweis, X. Reconstruction of the 1979-2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere 1, 21-40 (2007).
Fettweis, X., Gallée, H., Lefebre, F. & van Ypersele, J.-P. Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990-1991. Clim. Dyn. 24, 623-640 (2005).
Fettweis, X., Tedesco, M., van den Broeke, M. & Ettema, J. Melting trends over the Greenland ice sheet (1958-2009) from spaceborne microwave data and regional climate models. Cryosphere 5, 359-375 (2011).
Noël, B. et al. Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere 9, 1831-1844 (2015).
Lucas-Picher, P., Wulff-Nielsen, M., Christensen, J. H., Adalgeirsdóttir, G. & Simonsen, R. M. S. B. Very high resolution regional climate model simulations over Greenland: identifying added value. J. Geophys. Res. 117, D02108 (2012).
Noël, B. et al. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015). Cryosphere 10, 2361-2377 (2016).
Howat, I.M., Negrete, A. & Smith, B. E. The Greenland IceMapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509-1518 (2014).
Price, S. F., Payne, A. J., Howat, I. M. & Smith, B. E. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA 108, 8978-8983 (2011).
Goelzer, H. et al. Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol. 59, 733-749 (2013).
Nick, F. M. et al. Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nature 497, 235-238 (2013).
Rastner, P. et al. The first complete inventory of the local glaciers and ice caps on Greenland. The Cryosphere 6, 1483-1495 (2012).
Citterio, M. & Ahlstrøm, A. P. Brief communication 'The aerophotogrammetric map of Greenland ice masses'. Cryosphere 7, 445-449 (2013).
Polashenski, C. et al. Observations of pronounced Greenland ice sheet firn warming and implications for runoff production. Geophys. Res. Lett. 41, 4238-4246 (2014).
Machguth, H. et al. Greenland meltwater storage in firn limited by near-surface ice formation. Nat. Clim. Change 6, 390-393 (2016).
Khan, S. A. et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Clim. Change 4, 292-298 (2014).
Tedesco, M. et al. Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat. Commun. 7, 11723 (2016).
Undén, P. et al. HIRLAM-5. Scientific Documentation. Technical Report (HIRLAM-5 Project, Sweden, 2002).
Kuipers Munneke, P. et al. A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res. 116, D05114 (2011).
Lenaerts, J. T. M., van den Broeke, M. R., Angelen, J. H., van Meijgaard, E. & Déry, S. J. Drifting snow climate of the Greenland ice sheet: a study with a regional climate model. Cryosphere 6, 891-899 (2012).
Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. Roy. Meteorol. Soc. 131, 2961-3012 (2005).
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 137, 553-597 (2011).
Bamber, J. L., Ekholm, S. & Krabill, W. B. A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. J. Geophys. Res. 106, 6733-6745 (2001).
Van Meijgaard, E. et al. The KNMI Regional Atmospheric Climate Model RACMO Version 2.1. Technical Report No. 302 (Royal Netherlands Meteorological Institute, 2008).
Van Wessem, J. M. et al. Updated cloud physics improve the modelled near-surface climate of Antarctica of a regional atmospheric climate model. Cryosphere 8, 125-135 (2014).
Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 43, 866-872 (2014).
Van As, D. et al. Programme for Monitoring of the Greenland Ice Sheet (PROMICE): first temperature and ablation records. Geol. Surv. Den. Greenl. Bull. 23, 73-76 (2011).
Wouters, B. et al. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348, 899-903 (2015).
Moholdt, G., Nuth, C., Hagen, J. O. & Kohler, J. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ. RSE-07713, 12 (2010).
Van Tricht, K. et al. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 7, 1-9 (2016).
Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055-3071 (2003).