Firn aquifer; Firn modeling; Ice layer; Meltwater retention; Refreezing on greenland; Climatic conditions; Global sea level rise; Greenland; Ice layers; Surface meltwater production; Surface water flows; Vertical resolution; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Runoff has recently become the main source of mass loss from the Greenland Ice Sheet and is an important contributor to global sea level rise. Linking runoff to surface meltwater production is complex, as meltwater can be retained within the firn by refreezing or perennial liquid water storage. To constrain these uncertainties, the outputs of two offline snow/firn models of different complexity (IMAU-FDM and SNOWPACK) are compared to assess the sensitivity of meltwater retention to the model formulation (e.g., densification, irreducible water content, vertical resolution). Results indicate that model differences are largest in areas where firn aquifers form, i.e., particularly along the south-eastern margin of the ice sheet. The IMAU-FDM simulates higher densification rates for such climatic conditions and prescribes a lower irreducible water content than SNOWPACK. As a result, the model predicts substantially lower amounts of refreezing and liquid water storage. SNOWPACK performs better for this area, confirmed both by density profiles from firn cores and radar-inferred observations. Refreezing integrated over the entire ice sheet and averaged for the period 1960-2014 amounts to 216 Gt a-1 (IMAU-FDM) and 242 Gt a-1 (SNOWPACK), which is 41 and 46% of the total liquid water input (snowmelt and rainfall). The mean areal extents of perennial firn aquifers for 2010-2014 simulated by the models are 55,700 km2 (IMAU-FDM) and 90,200 km2 (SNOWPACK). Discrepancies between modeled firn profiles and observations emphasize the importance of processes currently not accounted for in most snow/firn models, such as vertical heterogeneous percolation, ponding of water on impermeable layers, lateral (sub-)surface water flow, and the issue of ill-constrained refreezing conditions at the base of firn aquifers.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Steger, Christian R.; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Reijmer, Carleen H.; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
van den Broeke, Michiel R.; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Wever, Nander; School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
Forster, Richard R.; Department of Geography, University of Utah, Salt Lake City, United States
Koenig, Lora S.; National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, United States
Munneke, Peter Kuipers; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Lehning, Michael; School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
Lhermitte, Stef; Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, Netherlands
Ligtenberg, Stefan R. M.; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Miège, Clément; Department of Geography, University of Utah, Salt Lake City, United States
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Firn meltwater retention on the greenland ice sheet: A model comparison
Anderson, E. A. (1976). A Point Energy and Mass Balance Model of a Snow Cover.Technical Report NWS19, NOAA.
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R. (2010). In situ measurements of Antarctic snow compaction compared with predictions of models. J. Geophys. Res. Earth Surf. 115:F03011. doi: 10.1029/2009JF001306
Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., and De Michele, C. (2016). Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments. Cryosphere 10, 2013-2026. doi: 10.5194/tc-10-2013-2016
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., et al. (2013). A new bed elevation dataset for Greenland. Cryosphere 7, 499-510. doi: 10.5194/tc-7-499-2013
Bartelt, P., and Lehning, M. (2002). A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model. Cold Regions Sci. Technol. 35, 123-145. doi: 10.1016/S0165-232X(02)00074-5
Bekryaev, R. V., Polyakov, I. V., and Alexeev, V. A. (2010). Role of polar amplification in long-term surface air temperature variations and Modern Arctic Warming. J. Clim. 23, 3888-3906. doi: 10.1175/2010JCLI3297.1
Bennartz,R., Shupe,M. D.,Turner, D. D.,Walden, V. P., Steffen, K.,Cox,C. J., et al. (2013). July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature 496, 83-86. doi: 10.1038/nature12002
Colbeck, S. C. (1972). A Theory of water percolation in snow. J. Glaciol. 11, 369-385.
Coléou, C., and Lesaffre, B. (1998). Irreducible water saturation in snow:experimental results in a cold laboratory. Ann. Glaciol. 26, 64-68.
Cox, C., Humphrey, N., and Harper, J. (2015). Quantifying meltwater refreezing along a transect of sites on the Greenland ice sheet. Cryosphere 9, 691-701. doi: 10.5194/tc-9-691-2015
Dadic, R., Schneebeli, M., Lehning, M., Hutterli, M. A., and Ohmura, A. (2008). Impact of the microstructure of snow on its temperature: a model validation with measurements from Summit, Greenland. J. Geophys. Res. Atmospheres 113:D14303. doi: 10.1029/2007JD009562
Doyle, S. H., Hubbard, A., van de Wal, R. S. W., Box, J. E., van As, D., Scharrer, K., et al. (2015). Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat. Geosci. 8, 647-653. doi: 10.1038/ngeo2482
Enderlin, E. M., Howat, I.M., Jeong, S., Noh,M.-J., van Angelen, J. H., and van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866-872. doi: 10.1002/2013GL059010
Forster, R. R., Box, J. E., van den Broeke, M. R., Miège, C., Burgess, E. W., van Angelen, J. H., et al. (2014). Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat. Geosci. 7, 95-98. doi: 10.1038/ngeo2043
Goelzer, H., Huybrechts, P., Raper, S. C. B., Loutre,M.-F., Goosse, H., and Fichefet, T. (2012). Millennial total sea-level commitments projected with the Earth system model of intermediate complexity LOVECLIM. Environ. Res. Lett.7:045401. doi: 10.1088/1748-9326/7/4/045401
Greuell, W., and Konzelmann, T. (1994). Numerical modelling of the energy balance and the englacial temperature of the Greenland Ice Sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m a.s.1.). Global Planet. Change 9, 91-114. doi: 10.1016/0921-8181(94)90010-8
Groot Zwaaftink, C. D., Cagnati, A., Crepaz, A., Fierz, C., Macelloni, G., Valt, M., and Lehning, M. (2013). Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK. Cryosphere 7, 333-347. doi: 10.5194/tc-7-333-2013
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X. (2012). Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature 491, 240-243. doi: 10.1038/nature11566
Hirashima, H., Yamaguchi, S., and Katsushima, T. (2014). A multi-dimensional water transport model to reproduce preferential flow in the snowpack. Cold Reg. Sci. Technol. 108, 80-90. doi: 10.1016/j.coldregions.2014.09.004
Humphrey, N. F., Harper, J. T., and Pfeffer, W. T. (2012). Thermal tracking of meltwater retention in Greenland’s accumulation area. J. Geophys. Res. Earth Surf. 117:F01010. doi: 10.1029/2011JF002083
Koenig, L. S., Miège, C., Forster, R. R., and Brucker, L. (2014). Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophys. Res. Lett. 41, 81-85. doi: 10.1002/2013GL058083
Kuipers Munneke, P., Ligtenberg, S. R., van den Broeke, M. R., van Angelen, J. H., and Forster, R. R. (2014). Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 476-483. doi: 10.1002/2013GL058389
Kuipers Munneke, P., Ligtenberg, S. R. M., Noël, B. P. Y.,Howat, I.M., Box, J. E., Mosley-Thompson, E., et al. (2015). Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960-2014. Cryosphere 9, 2009-2025. doi: 10.5194/tc-9-2009-2015
Kuipers Munneke, P., van den Broeke, M. R., Lenaerts, J. T. M., Flanner, M. G., Gardner, A. S., and van de Berg, W. J. (2011).A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res. Atmospheres 116:D05114. doi: 10.1029/2010JD015113
Lehning, M., Bartelt, P., Brown, B., and Fierz, C. (2002a). A physical SNOWPACK model for the Swiss avalanche warning: Part III: meteorological forcing, thin layer formation and evaluation. Cold Reg. Sci. Technol. 35, 169-184. doi: 10.1016/S0165-232X(02)00072-1
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P. (2002b). A physical SNOWPACK model for the Swiss avalanche warning:Part II. Snow microstructure. Cold Reg. Sci. Technol. 35, 147-167. doi: 10.1016/S0165-232X(02)00073-3
Lenaerts, J. T. M., van den Broeke, M. R., vanAngelen, J. H., vanMeijgaard, E., and Déry, S. J. (2012). Drifting snow climate of the Greenland ice sheet: a study with a regional climate model. Cryosphere 6, 891-899. doi: 10.5194/tc-6-891-2012
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R. (2011). An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 5, 809-819. doi: 10.5194/tc-5-809-2011
Livingstone, S. J., Clark, C. D., Woodward, J., and Kingslake, J. (2013). Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. Cryosphere 7, 1721-1740. doi: 10.5194/tc-7-1721-2013
Machguth, H., MacFerrin, M., van As, D., Box, J. E., Charalampidis, C., Colgan, W., et al. (2016). Greenland meltwater storage in firn limited by near-surface ice formation. Nat. Clim. Change 6, 390-393. doi: 10.1038/nclimate2899
Marsh, P., and Woo, M. (1984). Wetting front advance and freezing of meltwater within a snow cover 1. Observations in the Canadian Arctic. Water Resour. Res.20, 1853-1864. doi: 10.1029/WR020i012p01853
Miège, C., Forster, R. R., Brucker, L., Koenig, L. S., Solomon, D. K., Paden, J. D., et al. (2016). Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. J. Geophys. Res. Earth Surf. 121, 2381-2398. doi: 10.1002/2016JF003869
Mikkelsen, A. B., Hubbard, A., MacFerrin, M., Box, J. E., Doyle, S. H., Fitzpatrick, A., Hasholt, B., Bailey, H. L., Lindbäck, K., and Pettersson, R. (2016). Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention. Cryosphere 10, 1147-1159. doi: 10.5194/tc-10-1147-2016
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G. (2012). The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39:L20502. doi: 10.1029/2012GL053611
Noël, B., van de Berg, W. J., van Meijgaard, E., Kuipers Munneke, P., van de Wal, R. S. W., and van den Broeke, M. R. (2015). Evaluation of the updated regional climatemodel RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere 9, 1831-1844. doi: 10.5194/tc-9-1831-2015
Obleitner, F., and Lehning, M. (2004). Measurement and simulation of snow and superimposed ice at the Kongsvegen glacier, Svalbard (Spitzbergen). J. Geophys. Res. Atmospheres 109:D04106. doi: 10.1029/2003JD003945
Reeh, N. (2008). A nonsteady-state firn-densification model for the percolation zone of a glacier. J. Geophys. Res. Earth Surf. 113:F03023. doi: 10.1029/2007JF000746
Reijmer, C. H., van den Broeke, M. R., Fettweis, X., Ettema, J., and Stap, L. B. (2012). Refreezing on the Greenland ice sheet: a comparison of parameterizations. Cryosphere 6, 743-762. doi: 10.5194/tc-6-743-2012
Rennermalm, A. K., Moustafa, S. E., Mioduszewski, J., Chu, V. W., Forster, R. R., Hagedorn, B., et al. (2013). Understanding Greenland ice sheet hydrology using an integrated multi-scale approach. Environ. Res. Lett. 8:015017. doi: 10.1088/1748-9326/8/1/015017
Rodriguez-Morales, F., Gogineni, S., Leuschen, C. J., Paden, J. D., Li, J., Lewis, C. C., et al. (2014). Advanced Multifrequency Radar Instrumentation for Polar Research. IEEE Trans. Geosci. Remote Sens. 52, 2824-2842. doi: 10.1109/TGRS.2013.2266415
Schneider, T., and Jansson, P. (2004). Internal accumulation in firn and its significance for the mass balance of Storglaciaren, Sweden. J. Glaciol. 50, 25-34. doi: 10.3189/172756504781830277
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H., Rennermalm, A. K., et al. (2015). Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl. Acad. Sci. U.S.A. 112, 1001-1006. doi: 10.1073/pnas.14130 24112
Tedesco, M., Doherty, S., Fettweis, X., Alexander, P., Jeyaratnam, J., and Stroeve, J. (2016). The darkening of the greenland ice sheet: trends, drivers, and projections (1981-2100). Cryosphere 10, 477-496. doi: 10.5194/tc-10-477-2016
van Angelen, J. H., van den Broeke, M. R., Wouters, B., and Lenaerts, J. T. M. (2014). Contemporary (1960-2012) evolution of the climate and surface mass balance of the greenland ice sheet. Surv. Geophys. 35, 1155-1174. doi: 10.1007/s10712-013-9261-z
van As, D., Fausto, R. S., William, T. C., and Box, J. E. (2013). Darkening of the Greenland ice sheet due to the meltalbedo feedback observed at PROMICE weather stations. Geol. Surv. Denmark Greenl. Bull. 28, 69-72. doi: 10.5167/uzh-131201
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J., et al. (2009). Partitioning Recent Greenland Mass Loss. Science 326, 984-986. doi: 10.1126/science.1178176
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., et al. (2016). On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10, 1933-1946. doi: 10.5194/tc-10-1933-2016
Van Tricht, K., Lhermitte, S., Lenaerts, J. T.M., Gorodetskaya, I. V., L’Ecuyer, T. S., Noël, B., et al. (2016). Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 7:10266. doi: 10.1038/ncomms10266
Vernon, C. L., Bamber, J. L., Box, J. E., van den Broeke,M. R., Fettweis, X., Hanna, E., and Huybrechts, P. (2013). Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere 7, 599-614. doi: 10.5194/tc-7-599-2013
Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M. (2014). Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model. Cryosphere 8, 257-274. doi: 10.5194/tc-8-257-2014
Wever, N., Würzer, S., Fierz, C., and Lehning, M. (2016). Simulating ice layer formation under the presence of preferential flow in layered snowpacks. Cryosphere 10, 2731-2744. doi: 10.5194/tc-10-2731-2016
Wientjes, I. G. M.,Van deWal, R. S.W.,Reichart, G. J., Sluijs, A., andOerlemans, J. (2011). Dust from the dark region in the western ablation zone of the greenland ice sheet. Cryosphere 5, 589-601. doi: 10.5194/tc-5-589-2011
Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D., et al. (2012). Photophysiology and albedo-changing potential of the ice algal community on the surface of the greenland ice sheet. Int. Soc. Microb. Ecol.6, 2302-2313. doi: 10.1038/ismej.2012.107