Geophysics; Oceanography; Forestry; Aquatic Science; Ecology; Water Science and Technology; Soil Science; Geochemistry and Petrology; Earth-Surface Processes; Atmospheric Science; Space and Planetary Science; Earth and Planetary Sciences (miscellaneous); Paleontology
Abstract :
[en] Mass loss from the Greenland ice sheet (GrIS) in recent years has been dominated by runoff from surface melt. It is currently being studied extensively, while little interest has been given to the smallest component of surface mass balance (SMB): the vapor flux. Although poorly understood, it is not negligible and could potentially play a larger role in SMB in a warming climate where temperature, relative humidity, and precipitation changes remain uncertain. Here we present an innovative approach to estimate the vapor flux using the Atmospheric Infrared Sounder (AIRS) version 6 data and a modified vapor flux model (BMF13) over the GrIS between 2003 and 2014. One modification to the BMF13 model includes a new Multiangle Imaging SpectroRadiometer surface aerodynamic roughness product, which likely produces more accurate estimates of the drag coefficient on the ice sheet. When comparing AIRS data with GC-Net and Programme for Monitoring of the Greenland Ice Sheet automatic weather station observations of skin temperature, near-surface air temperature, and humidity, they agree within 2 K, 2.68 K, and 0.34 g kg-1. Largest differences occur in the ablation zone where there is significant subgrid heterogeneity. Overall, the average vapor flux from the GrIS between 2003 and 2014 was found to be 14.6±3.6 Gt yr-1. No statistically significant trends were found during the data record. This data set is compared to the Regional Atmospheric Climate Model (RACMO2.3) vapor flux, and BMF13 produced smaller vapor fluxes in the summer (~0.05 Gt d-1) and slightly more deposition in the winter (~9.4 × 10-3 Gt d-1). Annually, differences between BMF13 and RACMO2.3 were only 30±15%.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Boisvert, Linette N. ; Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, United States
Lee, Jae N. ; Joint Center for E and Technology (JCET), University of Maryland, Baltimore County, Baltimore, United States
Lenaerts, Jan T. M. ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
van den Broeke, Michiel R. ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Nolin, Anne W. ; College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, United States
Language :
English
Title :
Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland ice sheet: Comparisons with observations and a regional climate model
NASA - National Aeronautics and Space Administration
Funding text :
The work of Linette Boisvert and Jae Lee was funded by NASA ROSES 2012 IDS proposal: 12-IDS12-0120. This study is funded by Utrecht University through its strategic theme, Sustainability, Subtheme Water, Climate and Ecosystems. This work was carried out under the program of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture and Science (OCW). J.T.M.L. is supported by NWO ALW through a Veni postdoctoral grant. B.N. and M.R.v.d.B. acknowledge support from the Polar Program of NOW. Data from AIRS can be found at www.airs.jpl. nasa.gov. RACMO2.3 output is freely available by request to Michiel van den Broeke (m.r.vandenbroeke@uu.nl). The MISR roughness data product can be obtained from Anne Nolin (anne. nolin@gmail.com). The authors would like to thank Konrad Steffen for providing the GC-Net station data, which can be found at cires1.colorado. edu/steffen/gcnet. PROMICE data can be found readily available at: http:// www.promice.dk/. The authors would like to thank the anonymous reviewers for providing very helpful comments and feedback on this manuscript.
Ahlstrom, A. P., et al. (2008), A new programme for monitoring the mass loss of the Greenland ice sheet, Geol. Surv. Denmark Greenland Bull., 15, 61-64.
Andersen, S. B., A. P. Ahlstrom, M. L. Andersen, M. Citterio, C. Charalampidis, K. Edelvang, K. Haubner, S. H. Larsen, M. Viechers, and A. Weidick (2015), Greenland ice sheet melt area from MODIS (2000-2014), Geophys. Surv. Denmark Greenland Bull., 33, 57-60.
Andreas, E. L. (1987), Spectral measurements in a disturbed boundary layer over snow, J. Atmos. Sci., 44, 1912-1939, doi: 10.1175/1520-0469(1987)044<1912: SMIADB>2.0.CO;2.
Andreas, E. L., R. E. Jordan, and A. P. Makhtas (2005), Parameterizing turbulent exchange over sea ice: The ice station Weddell results, Boundary Layer Meteorol., 114, 439-460.
Andreas, E. L., P. O. G. Persson, R. E. Jordan, T. W. Horst, P. S. Guest, A. A. Grachev, and C. W. Fairall (2010), Parameterizing turbulent exchange over sea ice in winter, J. Hydrometeorol., 11, 87-104.
Bennartz, R., M. D. Shupe, D. D. Turnery, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen (2013), July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83-86, doi: 10.1038/nature12002.
Blackwell, W. J. (2012), Neural network Jacobian analysis for high-resolution profiling of the atmosphere, EURASIP J. Adv. Signal Process., 2012, 71, doi: 10.1186/1687-6180-2012-71.
Boisvert, L. N., T. Markus, and T. Vihma (2013), Moisture flux changes and trends for the entire Arctic in 2003-2011 derived from EOS Aqua data, J. Geophys. Res. Oceans, 118, 5829-5843, doi: 10.1002/jgrc.20414.
Boisvert, L. N., D. L. Wu, T. Vihma, and J. Susskind (2015a), Verification of air/surface humidity differences from AIRS and ERA-Interim in support of turbulent flux estimation in the Arctic, J. Geophys. Res. Atmos., 120, 2169-8996, doi: 10.1002/2014JD021666.
Boisvert, L. N., D. L. Wu, and C.-L. Shie (2015b), Increasing evaporation amounts seen in the Arctic between 2003-2013 from AIRS data, J. Geophys. Res. Atmos., 120, 6865-6881, doi: 10.1002/2015JD023258.
Box, J. E., and K. Steffen (2001), Sublimation on the Greenland ice sheet from automated weather station observations, J. Geophys. Res., 106, 33,965-33,981, doi: 10.1029/2001JD900219.
Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley (1971), Flux-profile relationships, J. Atmos. Sci., 28, 181-189.
Chen, J. L., C. R. Wilson, and B. D. Tapley (2006), Satellite Gravity measurements confirm accelerated melting of Greenland ice sheet, Science, 313(5795), 1958-1960, doi: 10.1126/science.1129007.
Cronin, M. F., C. W. Fairall, and M. J. McPhaden (2006), An assessment of buoy derived and numerical weather prediction of surface heat fluxes in the tropical Pacific, J. Geophys. Res., 111, C06038, doi: 10.1029/2005JC003324.
Dee, D. P., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553-597, doi: 10.1002/qj.828.
DiMarzio, J., A. Brenner, R. Schutz, C. A. Shuman, and H. J. Zwally (2007), GLAS/ICESat 1 km Laser Altimetry Digital Elevation Model of Greenland, Natl. Snow and Ice Data Cent., Digital media, Boulder, Colo.
Dong, S., S. T. Gille, J. Sprintall, and E. J. Fetzer (2010), Assessing the potential of the Atmospheric Infrared Sounder (AIRS) surface temperature and specific humidity in turbulent heat flux estimates in the Southern Ocean, J. Geophys. Res., 115, C05013, doi: 10.1029/2009JC005542.
Dyer, A. J. (1974), A review of flux-profile relationships, Boundary Layer Meteorol., 7, 363-372.
Echelmeyer, K., T. Clarke, and W. Harrison (1991), Surficial glaciology of Jakobshavns Isbrae, West Greenland: Part I. Surface morphology, J. Glaciol., 37(127), 368-382.
ECMWF-IFS (2008), Part IV: Physical processes (CY33R1), Technical Report.
Enderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. van Angelen, and M. R. van den Broeke (2014), An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866-872, doi: 10.1002/2013GL059010.
Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. E. Box, and K. Steffen (2010a), Climate of the Greenland ice sheet using a high-resolution climate model-Part 1: Evaluation, Cryosphere, 4, 511-527, doi: 10.5194/tc-4-511-2010.
Ettema, J., M. R. van den Broeke, E. van Meijgaard, and W. J. van de Berg (2010b), Climate of the Greenland ice sheet using a high-resolution climate model-Part 2: Near-surface climate and energy balance, Cryosphere, 4, 529-544, doi: 10.5194/tc-4-529-2010.
Fettweis, X., E. Hanna, C. Lang, A. Belleflamme, M. Erpicum, and H. Gallee (2013), Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet, Cryosphere, 7, 241-248, doi: 10.5194/tc-7-241-2013.
Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson (2007), SHEBA flux-profile relationships in the stable atmospheric boundary layer, Boundary Layer Meteorol., 124, 315-333, doi: 10.1007/s10546-007-9177-6.
Hall, D. K., J. C. Comiso, N. E. DiGirolamo, C. A. Shuman, J. E. Box, and L. S. Koenig (2013), Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS, Geophys. Res. Lett., 40, 2114-2120, doi: 10.1002/grl.50240.
Hanna, E., P. Huybrechts, K. Steffen, J. Cappelen, R. Huff, C. Shuman, T. Irvine-Fynn, S. Wise, and M. Griffiths (2008), Increased runoff from melt from the Greenland ice sheet: A response to global warming, J. Clim., 21, 331-341, doi: 10.1175/2007JCLI1964.1.
He, T., S. Liang, Y. Yu, D. Wang, F. Gao, and Q. Liu (2013), Greenland surface albedo changes in July 1981-2012 from satellite observations, Environ. Res. Lett., 8(4), doi: 10.1088/1748-9326/8/4/044043.
Howat, I. M., I. Joughin, and T. A. Scambos (2007), Rapid changes in ice discharge from Greenland outlet glaciers, Science, 315(5818), 1559-1561, doi: 10.1126/science.1138478.
Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus (2012), Validation of atmospheric reanalyses over the central Arctic Ocean, Geophys. Res. Lett., 39, L10802, doi: 10.1029/2012GL051591.
Johannessen, O. M., K. Khvorostovsky, M. W. Miles, and L. P. Bobylev (2005), Recent ice-sheet growth in the interior of Greenland, Science, 310(5750), 1013-1016, doi: 10.1126/science.1115356.
Kahn, S. A., et al. (2014), Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming, Nat. Clim. Change, 4, 292-299, doi: 10.1038/nclimate2161.
Kuipers Munneke, P., M. R. van den Broeke, J. T. M. Lenaerts, M. G. Flanner, A. S. Gardner, and W. J. van de Berg (2011), A new albedo parameterization for use in climate models over the Antarctic ice sheet, J. Geophys. Res., 116, D05114, doi: 10.1029/2010JD015113.
Launiainen, J., and T. Vihma (1990), Derivation of the turbulent surface fluxes-An iterative flux-profile method allowing arbitrary observing heights, Environ. Software, 5, 113-124.
Lenaerts, J. T. M., M. R. van den Broeke, J. H. van Angelen, E. van Meijgaard, and S. J. Dery (2012), Drifting snow climate of the Greenland ice sheet: A study with a regional climate model, Cryosphere, 6, 891-899, doi: 10.5194/tc-6-891-2012.
Louis, J.-F. (1979), A parametric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17(2), 187-202.
Mernild, S. H., T. L. Mote, and G. E. Liston (2011), Greenland ice sheet surface melt extent and trends: 1960-2010, J. Glaciol., 57(204), 621-628, doi: 10.3189/002214311797409712.
Mernild, S. H., E. Hanna, J. R. McConnell, M. Sigl, A. P. Beckerman, J. C. Yde, J. Cappelen, J. K. Malmros, and K. Steffen (2015), Greenland precipitation trends in a long-term instrumental climate context (1890-2012): Evaluation of coastal and ice core records, Int. J. Climatol., 35, 303-320, doi: 10.1002/joc.3986.
Mote, T. L. (2007), Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007, Geophys. Res. Lett., 34, L22507, doi: 10.1029/2007GL0.1976.
Neff, W., G. P. Compo, F. M. Ralph, and M. D. Shupe (2014), Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889, Geophys. Res. Lett., 119, 6520-6536, doi: 10.1002/2014JD021470.
Nghiem, S. V., D. K. Hall, T. L. Mote, M. Tedesco, M. R. Albert, K. Keegan, C. A. Shuman, N. E. DiGirolamo, and G. Neumann (2012), The extreme melt across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502, doi: 10.1029/2012GL053611.
Noel, B., W. J. van de Berg, E. van Meijgaard, P. Kuipers Menneke, R. S. W. van de Wal, and M. R. van den Broeke (2015), Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland ice sheet, Cryosphere, 9, 1831-1844, doi: 10.5194/ tc-9-1831-2015.
Nolin, A. W., F. M. Fetterer, and T. A. Scambos (2002), Surface roughness characterizations of sea ice and ice sheets: Case studies with MISR data, IEEE Trans. Geosci. Remote Sens., 40(7), 1605-1615, doi: 10.1109/TGRS,2002.801581.
Ohmura, A., P. Calanca, M. Wild, and M. Anklin (1999), Precipitation, accumulation, and mass balance of the Greenland ice sheet, Z. Gletsch. Glazialgeol., 35(1), 1-120.
Salesky, S. T., and M. Chamecki (2012), Random errors in turbulence measurements in the atmospheric surface layer: Implications for the Monin-Obhukov similarity theory, J. Atmos. Sci., 69(12), 3700-3714, doi: 10.1175/JAS-D-12-096.1.
Schuenemann, K. C., and J. J. Cassano (2010), Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 2. Analysis of 21st century atmospheric changes using self-organizing maps, J. Geophys. Res., 115, D05108, doi: 10.1029/2009JD011706.
Seo, K.-W., D. E. Waliser, C.-K. Lee, B. Tian, T. Scambos, B.-M. Kim, J. H. van Angelen, and M. R. van den Broeke (2015), Accelerated mass loss from Greenland ice sheet: Links to atmospheric circulation in the North Atlantic, Global Planet. Change, 128, 61-71, doi: 10.1016/j. gloplacha.2015.02.006.
Shepherd, A., et al. (2012), A reconciled estimate of ice-sheet mass balance, Science, 338(6111), 1183-1189, doi: 10.1126/science.1228102.
Smeets, C. J. P. P., and M. R. van den Broeke (2008), Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet, Boundary Layer Meteorol., 128, 315-338, doi: 10.1007/s10546-008-9291-0.
Sneed, W. A., and G. S. Hamilton (2007), Evolution of melt pond volume on the surface of the Greenland ice sheet, Geophys. Res. Lett., 34, L03501, doi: 10.1029/2006GL028697.
Steffen, K., J. E. Box, and W. Abdalati (1996), Greenland Climate Network: GC-Net, in CRREL 96-27 Special Report on Glaciers, Ice Sheets and Volcanoes (tribute to M. Meier), edited by S. C. Colbeck, pp. 98-103, US Army, Hanover, N. H.
Sundal, A. V., A. Shepherd, P. Nienow, E. Hanna, S. Palmer, and P. Huybrechts (2011), Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage, Nature, 469, 521-524, doi: 10.1038/nature09740.
Susskind, J., C. D. Barnet, and J. M. Blaisdell (2003), Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds, IEEE Trans. Geosci. Remote Sens., 41(2), 390-409, doi: 10.1109/TGRS.2002.808236.
Susskind, J., J. M. Blaisdell, L. Iredell, and F. Keita (2011), Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS science team version 5 retrieval algorithm, IEEE Trans. Geosci. Remote Sens., 49(3), 883-907, doi: 10.1109/TGRS.2010.2070508.
Susskind, J., J. M. Blaisdell, and L. Iredell (2014), Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: The atmospheric infrared sounder science team version-6 retrieval algorithm, J. Appl. Remote Sens., 8(1), 084994, doi: 10.1117/1.JRS.8.084994.
Tedesco, M., X. Fettweis, M. R. van den Broeke, R. S. W. van de Wal, C. J. P. P. Smeets, W. J. van de Berg, M. C. Serreze, and J. E. Box (2011), The role of albedo and accumulation in the 2010 melting record in Greenland, Environ. Res. Lett., 6, 014005, doi: 10.1088/1748-9326/6/1/014005.
Unden, P., et al. (2002), HIRLAM-5 scientific documentation, HIRLAM-5 Project Report, SMHI, 146 p.
Van Angelen, J. H., J. T. M. Lenaerts, S. Lhermitte, X. Fettweis, P. Kuipers Munneke, M. R. van den Broeke, E. van Meijgaard, and C. J. P. P. Smeets (2012), Sensitivity of Greenland ice sheet surface mass balance to surface albedo parameterization: A study with a regional climate model, Cryosphere, 6, 1175-1186, doi: 10.5194/tc-6-1175-2012.
Van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, E. van Meijgaard, I. Velicogna, and B. Wouters (2009), Partitioning recent Greenland mass loss, Science, 326(5955), 984-986, doi: 10.1126/science.1178176.
Van Wessem, J. M., C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard (2014), Updated cloud physics in a regional atmospheric climate model improves the modeled surface energy balance of Antarctica, Cryosphere, 8, 125-135, doi: 10.5194/tc-8-125-2014.
Velicogna, I., T. C. Sutterly, and M. R. van den Broeke (2014), Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data, J. Geophys. Res. Space Physics, 119, 8130-8137, doi: 10.1002/2014GL061052.
Vizcaino, M., W. H. Lipscomb, W. J. Sacks, and M. van den Broeke (2014), Greenland Surface mass balance at simulated by the community earth system model. Part II: Twenty-first-century changes, J. Clim., 27, 215-226, doi: 10.1175/JCLI-D-12-00588.1.
Wang, W., J. Li, and H. J. Zwally (2014), Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet, J. Glaciol., 58(210), doi: 10.3189/2012JoG11J187.
Woldemeskel, F. M., A. Sharma, B. Sivakumar, and R. Mehrotra (2012), An error estimation method for precipitation and temperature projects for future climates, J. Geophys. Res., 117, D22103, doi: 10.1029/2012JD018062.
Wouters, B., D. Chambers, and E. J. O. Schrama (2008), GRACE observes small-scale mass loss in Greenland, Geophys. Res. Lett., 35, L20501, doi: 10.1029/2008GL034816.
Zwally, H. J., et al. (2011), Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003-07 versus 1992-2002, J. Glaciol., 57(201), 88-102, doi: 10.3189/002214311795306682.