Water Science and Technology; Earth-Surface Processes
Abstract :
[en] We assess the recent contribution of the Greenland ice sheet (GrIS) to sea level change. We use the mass budget method, which quantifies ice sheet mass balance (MB) as the difference between surface mass balance (SMB) and solid ice discharge across the grounding line (D). A comparison with independent gravity change observations from GRACE shows good agreement for the overlapping period 2002-2015, giving confidence in the partitioning of recent GrIS mass changes. The estimated 1995 value of D and the 1958-1995 average value of SMB are similar at 411 and 418Gt yr-1, respectively, suggesting that ice flow in the mid-1990s was well adjusted to the average annual mass input, reminiscent of an ice sheet in approximate balance. Starting in the early to mid-1990s, SMB decreased while D increased, leading to quasi-persistent negative MB. About 60% of the associated mass loss since 1991 is caused by changes in SMB and the remainder by D. The decrease in SMB is fully driven by an increase in surface melt and subsequent meltwater runoff, which is slightly compensated by a small ( < 3%) increase in snowfall. The excess runoff originates from low-lying (< 2000ma.s.l.) parts of the ice sheet; higher up, increased refreezing prevents runoff of meltwater from occurring, at the expense of increased firn temperatures and depleted pore space. With a 1991-2015 average annual mass loss of ∼ 0.47±0.23mm sea level equivalent (SLE) and a peak contribution of 1.2mm SLE in 2012, the GrIS has recently become a major source of global mean sea level rise.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Van Den Broeke, Michiel R. ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Enderlin, Ellyn M. ; Climate Change Institute, School of Earth and Climate Sciences, University of Maine, Maine, United States
Howat, Ian M.; School of Earth Sciences, Byrd Polar and Climate Research Center, Ohio State University, United States
Kuipers Munneke, Peter ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Jan Van De Berg, Willem; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Van Meijgaard, Erik ; Royal Netherlands Meteorological Institute, De Bilt, Netherlands
Wouters, Bert; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
On the recent contribution of the Greenland ice sheet to sea level change
A, G., Wahr, J., and Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int., 192, 557-572, 2013
Bartholomew, I. D., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M. A., and Palmer, S. Seasonal variations in Greenland ice sheet motion: Inland extent and behaviour at higher elevations. Earth Planet. Sc. Lett., 307, 271-278, 2011
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83-86, 2013
Bevis, M., Wahr, J., Khan, S. A., Madsen, F. B., Brown, A., Willis, M., Kendrick, E., Knudsen, P., Box, J. E., Van Dam, T., Caccamise, D. J., Johns, B., Nylen, T., Abbott, R., White, S., Miner, J., Forsberg, R., Zhou, H., Wang, J., Wilson, T., Bromwich, D., and Francis, O. Bedrock displacements in Greenland manifest ice mass variations. climate cycles and climate change, P. Natl. Acad. Sci. USA, 109, 11944-11948, 2012
Bøggild, C. E., Brandt, R. E., Brown, K. J., and Warren, S. G. The ablation zone in northeast Greenland: ice types. albedos and impurities, J. Glaciol., 56, 101-113, 2010
Box, J. E. and Colgan, W. Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and Total Mass Balance (1840-2010). J. Climate, 26, 6990-7002, 2013
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. The Cryosphere, 6, 821-839, doi: 10.5194/tc-6-821-2012, 2012
Csatho, B. M., Schenk, A. F., Van Der Veen, C. J., Babonis, G., Duncan, K., Rezvanbehbahani, S., Van den Broeke, M. R., Simonsen, S. B., Nagarajan, S., and Van Angelen, J. H. Laser altimetry reveals complex pattern of Greenland ice sheet dynamics. P. Natl. Acad. Sci. USA, 111, 18478-18483, 2014
De la Peña, S., Howat, I. M., Nienow, P.W., Van den Broeke, M. R., Mosley-Thompson, E., Price, S. F., Mair, D., Noël, B., and Sole, A. J. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming. The Cryosphere, 9, 1203-1211, doi: 10.5194/tc-9-1203-2015, 2015
Doyle, S. H., Hubbard, A., Van De Wal, R. S. W., Box, J. E., Van As, D., Scharrer, K., Meierbachtol, T. W., Smeets, C. J. P. P., Harper, J. T., Johansson, E., Mottram, R. H., Mikkelsen, A. B., Wilhelms, F., Patton, H., Christoffersen, P., and Hubbard, B. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat. Geosci., 8, 647-653, 2015
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Beljaars, A., Schär, C., and Elder, K. An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation. J. Hydrometeorol., 11, 899-916, 2010
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., Van Angelen, J. H., and Van den Broeke, M. R. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 866-872, doi: 10.1002/2013GL059010, 2014
Ettema, J., Van den Broeke, M. R., Van Meijgaard, E., Van De Berg, W. J., Bamber, J. L., Box, J. E., and Bales, R. C. Higher surface mass balance of the Greenland ice sheet revealed by highresolution climate modeling. Geophys. Res. Lett., 36, L12501, doi: 10.1029/2009GL038110, 2009
Fausto, R. S. and Van As, D. Ablation observations for 2008-2011 from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE). GEUS Bulletin, 26, 73-76, 2012
Fausto, R. S., Van As, D., Box, J. E., Colgan, W., Langen, P. L., and Mottram, R. H. The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012. Geophys. Res. Lett., 43, 2649-2658, 2016
Fettweis, X., Franco, B., Tedesco, M., Van Angelen, J. H., Lenaerts, J. T. M., Van den Broeke, M. R., and Gallée, H. E stimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 469-489, doi: 10.5194/tc-7-469-2013, 2013a.
Fettweis, X., Hanna, E., Lang, C., Belleflamme, A., Erpicum, M., and Gallée, H. Brief communication ?Important role of the midtropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet?. The Cryosphere, 7, 241-248, doi: 10.5194/tc-7-241-2013, 2013b.
Forster, R. R., Box, J. E., Van den Broeke, M. R., Miège, C., Burgess, E. W., Van Angelen, J. H., Lenaerts, J. T. M., Koenig, L. S., Paden, J., Lewis, C., Gogineni, S. P., Leuschen, C., and Mc-Connell, J. R. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat. Geosci., 7, 95-98, 2013
Fyke, J. G., Vizcáno, M., Lipscomb, W., and Price, S. Future climate warming increases Greenland ice sheet surface mass balance variability. Geophys. Res. Lett., 41, 470-475, 2014
Hanna, E., Huybrechts, P., Cappelen, J., Steffen, K., Bales, R. C., Burgess, E., McConnell, J. R., Peder Steffensen, J., Van den Broeke, M., Wake, L., Bigg, G., Griffiths, M., and Savas, D. Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis. and links with global climate forcing, J. Geophys. Res.-Atmos., 116, D24121, doi: 10.1029/2011JD016387, 2011
Hanna, E., Jones, J. M., Cappelen, J., Mernild, S. H., Wood, L., Steffen, K., and Huybrechts, P. The influence of North Atlantic atmospheric and oceanic forcing effects on 1900-2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol., 862-880, 2013a.
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P. L., and Zwally, H. J. Ice-sheet mass balance and climate change. Nature, 498, 51-59, 2013b.
Hanna, E., Fettweis, X., Mernild, S. H., Cappelen, J., Ribergaard, M. H., Shuman, C. A., Steffen, K., Wood, L., and Mote, T. L. At-mospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol., 34, 1022-1037, 2014
Hanna, E., Cropper, T. E., Hall, R. J., and Cappelen, J. Greenland Blocking Index 1851-2015: a regional climate change signal. Int. J. Climatol., doi: 10.1002/joc.4673, 2016
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature, 491, 240-243, 2012
Helm, V., Humbert, A., and Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8, 1539-1559, doi: 10.5194/tc-8-1539-2014, 2014
Howat, I. M. and Eddy, A. Multi-decadal retreat of Greenland?s marine-terminating glaciers. J. Glaciol., 57, 389-396, 2011
Joughin, I., Das, S. B., King, M. A., Smith, B. E., Howat, I. M., and Moon, T. Seasonal Speedup Along theWestern Flank of the Greenland Ice Sheet. Science, 320, 781-783, 2008
Kjær, K. H., Khan, S. A., Korsgaard, N. J., Wahr, J., Bamber, J. L., Hurkmans, R., Van den Broeke, M. R., Timm, L. H., Kjeldsen, K. K., Bjørk, A. A., Larsen, N. K., Jørgensen, L. T., Færch-Jensen, A., and Willerslev, E. Aerial Photographs Reveal Late-20th-Century Dynamic Ice Loss in Northwestern Greenland. Science, 337, 569-573, 2012
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E., Funder, S., Larsen, N. K., Bamber, J. L., Colgan, W., Van den Broeke, M. R., Siggaard-Andersen, M.-L., Nuth, C., Schomacker, A., Andresen, C. S., Willerslev, E., and Kjær, K. H. Spatial and temporal distribution of mass loss from the Greenland ice sheet since AD 1900. Nature, 528, 396-400, 2015
Kuipers Munneke, P., Van den Broeke, M. R., Lenaerts, J. T. M., Flanner, M. G., Gardner, A. S., and Van De Berg, W. J. A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res., 116, D05114, doi: 10.1029/2010JD015113, 2011
Kuipers Munneke, P., M. Ligtenberg, S. R., Van den Broeke, M. R., Van Angelen, J. H., and Forster, R. R. Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. Geophys. Res. Lett., 41, 476-483, doi: 10.1002/2013GL058389, 2014
Kuipers Munneke, P., Ligtenberg, S. R. M., Noël, B. P. Y., Howat, I. M., Box, J. E., Mosley-Thompson, E., McConnell, J. R., Steffen, K., Harper, J. T., Das, S. B., and Van den Broeke, M. R. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes. 1960-2014, The Cryosphere, 9, 2009-2025, doi: 10.5194/tc-9-2009-2015, 2015
Lee, D. E. and Biasutti, M. Climatology and Variability of Precipitation in the Twentieth-Century Reanalysis. J. Climate, 27, 5964-5981, 2014
Lenaerts, J. T. M., Van den Broeke, M. R., Van Angelen, J. H., Van Meijgaard, E., and Déry, S. J. Drifting snow climate of the Greenland ice sheet: a study with a regional climate model. The Cryosphere, 6, 891-899, doi: 10.5194/tc-6-891-2012, 2012
Machguth, H., MacFerrin, M., Van As, D., Box, J. E., Charalampidis, C., Colgan, W., Fausto, R. S., Meijer, H. A. J., Mosley-Thompson, E., and Van De Wal, R. S. W. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change, 6, 390-393, 2016
McLeod, J. T. and Mote, T. L. Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland ice sheet. Int. J. Climatol., 36, 1484-1499, 2016
Moon, T., Joughin, I., Smith, B., and Howat, I. 21st-Century Evolution of Greenland Outlet Glacier Velocities. Science, 336, 576-578, 2012
Moon, T., Joughin, I., Smith, B., Van den Broeke, M. R., Van De Berg, W.-J., Noël, B., and Usher, M. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41, 7209-7216, 2014
Noël, B., Van De Berg, W. J., Van Meijgaard, E., Kuipers Munneke, P., Van De Wal, R. S. W., and Van den Broeke, M. R. Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. The Cryosphere, 9, 1831-1844, doi: 10.5194/tc-9-1831-2015, 2015
Noël, B., Van De Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., and Van den Broeke, M. R. A daily. 1 km resolution dataset of downscaled Greenland ice sheet surface mass balance (1958-2015), The Cryosphere Discuss., doi: 10.5194/tc-2016-145, in review, 2016
Overly, T. B., Hawley, R. L., Helm, V., Morris, E. M., and Chaudhary, R. N. Greenland annual accumulation along the EGIG line. 1959-2004, from ASIRAS airborne radar and neutronprobe density measurements, The Cryosphere, 10, 1679-1694, doi: 10.5194/tc-10-1679-2016, 2016
Radic, V. and Hock, R. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat. Geosci., 4, 91-94, 2011
Rennermalm, A. K., Smith, L. C., Chu, V.W., Box, J. E., Forster, R. R., Van den Broeke, M. R., Van As, D., and Moustafa, S. E. Evidence of meltwater retention within the Greenland ice sheet. The Cryosphere, 7, 1433-1445, doi: 10.5194/tc-7-1433-2013, 2013
Rignot, E. and Kanagarathnam, P. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986-990, 2006
Rignot, E., Box, J. E., Burgess, E., and Hanna, E. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35, L20502, doi: 10.1029/2008GL035417, 2008
Rignot, E., Velicogna, I., Van den Broeke, M. R., Monaghan, A., and Lenaerts, J. T. M. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503, doi: 10.1029/2011GL046583, 2011
Sasgen, I., Van den Broeke, M. R., Bamber, J. L., Rignot, E., Sørensen, L. S., Wouters, B., Martinec, Z., Velicogna, I., and Simonsen, S. B. Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sc. Lett., 333-334, 293-303, 2012
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., Van Angelen, J. H., Van De Berg, W. J., Van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J. A reconciled estimate of ice-sheet mass balance. Science, 338, 1183-1189, 2012
Sole, A., Nienow, P., Bartholomew, I., Mair, D., Cowton, T., Tedstone, A., and King, M. A. Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers. Geophys. Res. Lett., 40, 3940-3944, 2013
Stibal, M., Sabacka, M., and Zarsky, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci., 5, 771-774, 2012
Stroeve, J., Box, J. E., Gao, F., Liang, S., Nolin, A., and Schaaf, C. Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements. Remote Sens. Environ., 94, 46-60, 2005
Tedesco, M., Fettweis, X., Van den Broeke, M. R., Van De Wal, R. S. W., Smeets, C. J. P. P., Van De Berg, W. J., Serreze, M. C., and Box, J. E. The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett., 6, 014005, doi: 10.1088/1748-9326/6/1/014005, 2011
Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E., and Wouters, B. Evidence and analysis of 2012 Greenland records from spaceborne observations. a regional climate model and reanalysis data, The Cryosphere, 7, 615-630, doi: 10.5194/tc-7-615-2013, 2013
Tedesco, M., Mote, T., Fettweis, X., Hanna, E., Jeyaratnam, J., Booth, J. F., Datta, R., and Briggs, K. Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat. Commun., 7, 11723 (2016), doi: 10.1038/ncomms11723, 2016
Thomas, R., Davis, C., Frederick, E., Krabill, W., Li, Y., Manizade, S., and Martin, C. A comparison of Greenland ice-sheet volume changes derived from altimetry measurements. J. Glaciol., 54, 203-212, 2008
Van Angelen, J. H., Van den Broeke, M. R., Wouters, B., and Lenaerts, J. T. M. Contemporary (1960-2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surv. Geophys., 35, 1155-1174, 2014
Van De Wal, R. S. W., Boot, W., Van den Broeke, M. R., Smeets, C. J. P. P., Reijmer, C. H., Donker, J. J. A., and Oerlemans, J. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland ice sheet. Science, 321, 111-113, 2008
Van den Broeke, M. R., Bamber, J., Ettema, J., Rignot, E., Schrama, E. J. O., Van De Berg, W. J., Van Meijgaard, E., Velicogna, I., and Wouters, B. Partitioning recent Greenland mass loss. Science, 326, 984-986, 2009
Van Tricht, K., Lhermitte, S., Lenaerts, J. T. M., Gorodetskaya, I. V., L/?Ecuyer, T. S., Noel, B., Van den Broeke, M. R., Turner, D. D., and Van Lipzig, N. P. M. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun., 7, 10266, doi: 10.1038/ncomms10266, 2016
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T. Observations: Cryosphere. in: Climate Change 2013: The Physical Science Basis. Contribution ofWorking Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., 4, 317-382, Cambridge University Press, 2013
Velicogna, I. and Wahr, J. Acceleration of Greenland ice mass loss in spring 2004. Nature, 443, 329-331, 2006
Vernon, C. L., Bamber, J. L., Box, J. E., Van den Broeke, M. R., Fettweis, X., Hanna, E., and Huybrechts, P. Surface mass balance model intercomparison for the Greenland ice sheet. The Cryosphere, 7, 599-614, doi: 10.5194/tc-7-599-2013, 2013
Wahr, J., Swenson, S., and Velicogna, I. Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33, L06401, doi: 10.1029/2005GL025305, 2006
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W. Improved methods for observing Earth?s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res.-Sol. Ea., 120, 2648-2671, 2015
Wouters, B., Chambers, D., and Schrama, E. J. O. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35, L20501, doi: 10.1029/2008GL034816, 2008
Wouters, B., Bamber, J. L., Van den Broeke, M. R., Lenaerts, J. T. M., and Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci., 6, 613-616, 2013