[en] Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Carroll, D.; Department of Earth Sciences, University of Oregon, Eugene, United States
Sutherland, D.A.; Department of Earth Sciences, University of Oregon, Eugene, United States
Hudson, B.; Applied Physics Laboratory, University of Washington, Seattle, United States
Moon, T.; Department of Earth Sciences, University of Oregon, Eugene, United States ; Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
Catania, G.A.; Institute for Geophysics, University of Texas, Austin, United States ; Department of Geology, University of Texas, Austin, United States
Shroyer, E.L.; College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, United States
Nash, J.D.; College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, United States
Bartholomaus, T.C.; Institute for Geophysics, University of Texas, Austin, United States ; Department of Geology, University of Texas, Austin, United States
Felikson, D.; Institute for Geophysics, University of Texas, Austin, United States ; Department of Geology, University of Texas, Austin, United States
Stearns, L.A.; Department of Geology, University of Kansas, Lawrence, United States
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
van den Broeke, M.R.; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords
NASA - National Aeronautics and Space Administration UO - University of Oregon
Funding text :
This work was partially supported by the National Aeronautics and Space Administration grant NNX12AP50G and the University of Oregon. M.R. van den Broeke and B.P.Y. Noël acknowledge financial support from the Polar Program of the Netherlands Organization for Scientific Research (NWO) and the Netherlands Earth System Science Center. T. Moon acknowledges support from the NSF OCE Postdoctoral Fellowship. We thank two anonymous reviewers for their thoughtful and constructive criticism of this work. Data used in this work are available by e-mailing the corresponding author.
Andresen, C. S., K. K. Kjeldsen, B. Harden, N. Nørgaard-Pedersen, and K. H. Kjær (2014), Outlet glacier dynamics and bathymetry at Upernavik Isstrøm and Upernavik Isfjord north-west Greenland, Geol. Surv. Den. Greenl. Bull., 31, 79–82.
Azetsu-Scott, K., and F. C. Tan (1997), Oxygen isotope studies from Iceland to an east Greenland fjord: Behaviour of glacial meltwater plume, Mar. Chem., 56(3), 239–251.
Bartholomaus, T. C., et al. (2016), Contrasts in the response of adjacent fjords and glaciers to surface melt in western Greenland, Ann. Glaciol., 1–14, doi:10.1017/aog.2016.19.
Beaird, N., F. Straneo, and W. Jenkins (2015), Spreading of Greenland meltwaters in the ocean revealed by noble gases, Geophys. Res. Lett., 42, 7705–7713, doi:10.1002/2015GL065003.
Bendtsen, J., J. Mortensen, K. Lennert, and S. Rysgaard (2015), Heat sources for glacial ice melt in a west Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge, Geophys. Res. Lett., 42, 4089–4095, doi:10.1002/2015GL063846.
Boghosian, A., K. Tinto, J. R. Cochran, D. Porter, S. Elieff, B. L. Burton, and R. E. Bell (2015), Resolving bathymetry from airborne gravity along Greenland fjords, J. Geophys. Res. Solid Earth, 120, 8516–8533, doi:10.1002/2015JB012129.
Carroll, D., D. A. Sutherland, E. L. Shroyer, J. D. Nash, G. A. Catania, and L. A. Stearns (2015), Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation, J. Phys. Oceanogr., 45(8), 2169–2185.
Chauché, N., A. Hubbard, J. C. Gascard, J. E. Box, R. Bates, M. Koppes, and H. Patton (2014), Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers, Cryosphere, 8(4), 1457–1468.
Christoffersen, P., R. I. Mugford, K. J. Heywood, I. Joughin, J. A. Dowdeswell, J. P. M. Syvitski, and T. J. Benham (2011), Warming of waters in an east Greenland fjord prior to glacier retreat: Mechanisms and connection to large-scale atmospheric conditions, Cryosphere, 5(3), 701–714.
Cofaigh, C. Ó., J. A. Dowdeswell, A. E. Jennings, K. A. Hogan, A. Kilfeather, J. F. Hiemstra, and J. M. Lloyd (2013), An extensive and dynamic ice sheet on the west Greenland shelf during the last glacial cycle, Geology, 41(2), 219–222.
Cowton, T., D. Slater, A. Sole, D. Goldberg, and P. Nienow (2015), Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes, J. Geophys. Res. Oceans, 120, 796–812, doi:10.1002/2014JC010324.
Cuffey, K. M., and W. S. B. Paterson (2010), The Physics of Glaciers, Academic Press, Cambridge, Mass.
Dowdeswell, J. A., K. A. Hogan, C. Ó. Cofaigh, E. M. G. Fugelli, J. Evans, and R. Noormets (2014), Late Quaternary ice flow in a west Greenland fjord and cross-shelf trough system: Submarine landforms from Rink Isbrae to Uummannaq shelf and slope, Quat. Sci. Rev., 92, 292–309.
Enderlin, E. M., I. M. Howat, S. Jeong, M. J. Noh, J. H. Angelen, and M. R. Broeke (2014), An improved mass budget for the Greenland Ice Sheet, Geophys. Res. Lett., 41, 866–872, doi:10.1002/2013GL059010.
Fried, M. J., G. A. Catania, T. C. Bartholomaus, D. Duncan, M. Davis, L. A. Stearns, and D. A. Sutherland (2015), Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier, Geophys. Res. Lett., 42, 9328–9336, doi:10.1002/2015GL065806.
Gladish, C. V., D. M. Holland, A. Rosing-Asvid, J. W. Behrens, and J. Boje (2015), Oceanic boundary conditions for Jakobshavn glacier. Part I: Variability and renewal of Ilulissat Icefjord waters, 2001–14*, J. Phys. Oceanogr., 45(1), 3–32.
Holland, D. M., and A. Jenkins (1999), Modeling thermodynamic ice-ocean interactions at the base of an ice shelf, J. Phys. Oceanogr., 29(8), 1787–1800.
Holland, D. M., R. H. Thomas, B. De Young, M. H. Ribergaard, and B. Lyberth (2008), Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters, Nat. Geosci., 1(10), 659–664.
Inall, M. E., T. Murray, F. R. Cottier, K. Scharrer, T. J. Boyd, K. J. Heywood, and S. L. Bevan (2014), Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland Ice Sheet, J. Geophys. Res. Oceans, 119, 631–645, doi:10.1002/2013JC009295.
Jackson, R., and F. Straneo (2016), Heat, salt, and freshwater budgets for a glacial fjord in Greenland, J. Phys. Oceanogr., doi:10.1175/JPO-D-15-0134.1, in press.
Jackson, R. H., F. Straneo, and D. A. Sutherland (2014), Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months, Nat. Geosci., 7(7), 503–508.
Jenkins, A. (2011), Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers, J. Phys. Oceanogr., 41(12), 2279–2294.
Jenkins, A., K. W. Nicholls, and H. F. Corr (2010), Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica, J. Phys. Oceanogr., 40(10), 2298–2312.
Joughin, I., and T. Moon (2015), MEaSUREs Annual Greenland Outlet Glacier Terminus Positions from SAR Mosaics [73°N, 72°W; 63°N, 32°W], NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colo., doi:10.5067/DC0MLBOCL3EL, Accessed October 18, 2015.
Killworth, P. D. (1977), Mixing of the Weddell Sea continental slope, Deep Sea Res., 24(5), 427–448.
Lenaerts, J., D. Le Bars, L. Kampenhout, M. Vizcaino, E. M. Enderlin, and M. R. Broeke (2015), Representing Greenland Ice Sheet freshwater fluxes in climate models, Geophys. Res. Lett., 42, 6373–6381, doi:10.1002/2015GL064738.
Lewis, S. M., and L. C. Smith (2009), Hydrologic drainage of the Greenland Ice Sheet, Hydrol. Processes, 23(14), 2004.
Luckman, A., D. I. Benn, F. Cottier, S. Bevan, F. Nilsen, and M. Inall (2015), Calving rates at tidewater glaciers vary strongly with ocean temperature, Nat. Commun., 6.
MacAyeal, D. R. (1985), Evolution of tidally triggered meltwater plumes below ice shelves, Oceanol. Antarct. Cont. Shelf, 133–143.
Moon, T., and I. Joughin (2008), Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007, J. Geophys. Res., 113, F02022, doi:10.1029/2007JF000927.
Moon, T., I. Joughin, B. Smith, M. R. Broeke, W. J. Berg, B. Noël, and M. Usher (2014), Distinct patterns of seasonal Greenland glacier velocity, Geophys. Res. Lett., 41, 7209–7216, doi:10.1002/2014GL061836.
Morlighem, M., E. Rignot, J. Mouginot, H. Seroussi, and E. Larour (2014), Deeply incised submarine glacial valleys beneath the Greenland Ice Sheet, Nat. Geosci., 7(6).
Morlighem, M., E. Rignot, J. Mouginot, H. Seroussi and E. Larour (2015), IceBridge BedMachine Greenland, Version 2 [73°N, 72°W; 63°N, 32°W], NASA DAAC at the National Snow and Ice Data Center, Boulder, Colo., doi:10.5067/AD7B0HQNSJ29.
Mortensen, J., J. Bendtsen, R. J. Motyka, K. Lennert, M. Truffer, M. Fahnestock, and S. Rysgaard (2013), On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord, J. Geophys. Res. Oceans, 118, 1382–1395, doi:10.1002/jgrc.20134.
Morton, B. R., G. Taylor, and J. S. Turner (1956), Turbulent gravitational convection from maintained and instantaneous sources, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 234(1196), 1–23.
Motyka, R. J., M. Truffer, M. Fahnestock, J. Mortensen, S. Rysgaard, and I. Howat (2011), Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat, J. Geophys. Res., 116, F01007, doi:10.1029/2009JF001632.
Münchow, A., K. K. Falkner, and H. Melling (2007), Spatial continuity of measured seawater and tracer fluxes through Nares Strait, a dynamically wide channel bordering the Canadian Archipelago, J. Mar. Res., 65(6), 759–788.
Münchow, A., K. K. Falkner, and H. Melling (2015), Baffin Island and West Greenland Current Systems in northern Baffin Bay, Prog. Oceanogr., 132, 305–317.
Nick, F. M., A. Vieli, I. M. Howat, and I. Joughin (2009), Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2(2), 110–114.
Noël, B., W. J. Van De Berg, E. Van Meijgaard, P. Kuipers Munneke, R. Van De Wal, and M. R. Van Den Broeke (2015), Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland Ice Sheet, Cryosphere, 9(5), 1831–1844.
O'Callaghan, J. F., and D. M. Mark (1984), The extraction of drainage networks from digital elevation data, Comput. Vis. Graph. Image Process., 28(3), 323–344.
O'Leary, M., and P. Christoffersen (2013), Calving on tidewater glaciers amplified by submarine frontal melting, Cryosphere, 7(1), 119–128.
Porter, D. F., K. J. Tinto, A. Boghosian, J. R. Cochran, R. E. Bell, S. S. Manizade, and J. G. Sonntag (2014), Bathymetric control of tidewater glacier mass loss in northwest Greenland, Earth Planet. Sci. Lett., 401, 40–46.
Rignot, E., M. Koppes, and I. Velicogna (2010), Rapid submarine melting of the calving faces of west Greenland glaciers, Nat. Geosci., 3(3), 187–191.
Rignot, E., I. Fenty, Y. Xu, C. Cai, and C. Kemp (2015), Undercutting of marine-terminating glaciers in west Greenland, Geophys. Res. Lett., 42, 5909–5917, doi:10.1002/2015GL064236.
Rignot, E., I. Fenty, Y. Xu, C. Cai, I. Velicogna, C. Ó. Cofaigh, and D. Duncan (2016a), Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland, Geophys. Res. Lett., 43, 2667–2674, doi:10.1002/2016GL067832.
Rignot, E., Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, and C. Cai (2016b), Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades, Geophys. Res. Lett., 43, 6374–6382, doi:10.1002/2016GL068784.
Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach (2013), Seasonal variability of submarine melt rate and circulation in an east Greenland fjord, J. Geophys. Res. Oceans, 118, 2492–2506, doi:10.1002/jgrc.20142.
Shepherd, A., E. R. Ivins, A. Geruo, V. R. Barletta, M. J. Bentley, S. Bettadpur, and M. Horwath (2012), A reconciled estimate of ice-sheet mass balance, Science, 338(6111), 1183–1189.
Slater, D. A., P. W. Nienow, T. R. Cowton, D. N. Goldberg, and A. J. Sole (2015), Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates, Geophys. Res. Lett., 42, 2861–2868, doi:10.1002/2014GL062494.
Slater, D. A., D. N. Goldberg, P. W. Nienow, and T. R. Cowton (2016), Scalings for submarine melting at tidewater glaciers from buoyant plume theory, J. Phys. Oceanogr., 46(6), 1839–1855.
Smith, P. C. (1975), A streamtube model for bottom boundary currents in the ocean, Deep Sea Res. Oceanogr. Abstr., 22(12), 853–873.
Stevens, L. A., F. Straneo, S. B. Das, A. J. Plueddemann, A. L. Kukulya, and M. Morlighem (2016), Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations, Cryosphere, 10(1), 417–432.
Straneo, F., and C. Cenedese (2015), The dynamics of Greenland's glacial fjords and their role in climate, Annu. Rev. Mar. Sci., 7, 89–112.
Straneo, F., and P. Heimbach (2013), North Atlantic warming and the retreat of Greenland's outlet glaciers, Nature, 504(7478), 36–43.
Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, and A. Rosing-Asvid (2010), Rapid circulation of warm subtropical waters in a major glacial fjord in east Greenland, Nat. Geosci., 3(3), 182–186.
Straneo, F., R. G. Curry, D. A. Sutherland, G. S. Hamilton, C. Cenedese, K. Våge, and L. A. Stearns (2011), Impact of fjord dynamics and glacial runoff on the circulation near Helheim glacier, Nat. Geosci., 4(5), 322–327.
Straneo, F., D. A. Sutherland, D. Holland, C. Gladish, G. S. Hamilton, H. L. Johnson, and M. Koppes (2012), Characteristics of ocean waters reaching Greenland's glaciers, Ann. Glaciol., 53(60), 202–210.
Sutherland, D. A., and F. Straneo (2012), Estimating ocean heat transports and submarine melt rates in Sermilik fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles, Ann. Glaciol., 53(60), 50–58.
Sutherland, D. A., F. Straneo, and R. S. Pickart (2014), Characteristics and dynamics of two major Greenland glacial fjords, J. Geophys. Res. Oceans, 119, 3767–3791, doi:10.1002/2013JC009786.
Tarboton, D. G. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33(2), 309–319, doi:10.1029/96WR03137.
van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, and B. Wouters (2009), Partitioning recent Greenland mass loss, Science, 326(5955), 984–986.
Vieli, A., and F. M. Nick (2011), Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications, Surv. Geophys., 32(4–5), 437–458.
Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes (2012), Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge, Ann. Glaciol., 53(60), 229–234.
Xu, Y., E. Rignot, I. Fenty, D. Menemenlis, and M. Flexas (2013), Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations, Geophys. Res. Lett., 40, 4648–4653, doi:10.1002/grl.50825.