Greenland; interferometric synthetic aperture radar; meltwater; seasonal velocity; subglacial drainage; terminus; Control mechanism; Greenland Ice Sheet; Interferometric synthetic aperture radars; Subglacial meltwater; Velocity fluctuations; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes.
KEY POINTS: First multi-region seasonal velocity measurements show regional differencesSeasonal velocity fluctuations on most glaciers appear meltwater controlledSeasonal development of efficient subglacial drainage geographically divided.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Moon, Twila; Earth and Space Sciences, University of Washington Seattle, Washington, USA , Polar Science Center, Applied Physics Lab, University of Washington Seattle, Washington, USA , National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder Boulder, Colorado, USA
Joughin, Ian; Polar Science Center, Applied Physics Lab, University of Washington Seattle, Washington, USA
Smith, Ben; Polar Science Center, Applied Physics Lab, University of Washington Seattle, Washington, USA
van den Broeke, Michiel R; Institute for Marine and Atmospheric Research, Utrecht University Utrecht, Netherlands
van de Berg, Willem Jan; Institute for Marine and Atmospheric Research, Utrecht University Utrecht, Netherlands
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institute for Marine and Atmospheric Research, Utrecht University Utrecht, Netherlands
Usher, Mika; Polar Science Center, Applied Physics Lab, University of Washington Seattle, Washington, USA
Language :
English
Title :
Distinct patterns of seasonal Greenland glacier velocity.
Ahlstrøm, A. P., S. B. Andersen, M. L. Andersen, H. Machguth, F. M. Nick, I. Joughin, C. H. Reijmer, R. van de Wal, J. P. Boncori, and, J. E. Box, (2013), Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instrument, Earth Syst. Sci. Data, 5 (2), doi: 10.5194/essd-5-277-2013.
Banwell, A. F., I. C. Willis, and, N. S. Arnold, (2013), Modeling subglacial water routing at Paakitsoq, W Greenland, J. Geophys. Res. Earth Surface, 118, 1282-1295, doi: 10.1002/jgrf.20093.
Bartholomew, I., P. Nienow, D. Mair, A. Hubbard, M. A. King, and, A. Sole, (2010), Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3 (6), 408-411, doi: 10.1038/ngeo863.
Bevan, S. L., A. J. Luckman, and, T. Murray, (2012), Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers, The Cryosphere, 6 (5), 923-937, doi: 10.5194/tc-6-923-2012.
Carr, J. R., C. R. Stokes, and, A. Vieli, (2013), Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing: Twenty years of rapid change, Prog. Phys. Geogr., 37 (4), 436-467, doi: 10.1177/0309133313483163.
Enderlin, E. M., I. M. Howat, S. Jeong, M. J. Noh, J. H. Angelen, and, M. R. Broeke, (2014), An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866-872, doi: 10.1002/2013GL059010.
Forster, R. R., et al. (2013), Extensive liquid meltwater storage in firn within the Greenland ice sheet, Nat. Geosci., 7 (12), 1-4, doi: 10.1038/ngeo2043.
Hewitt, I. J., (2013), Seasonal changes in ice sheet motion due to melt water lubrication, Earth Planet. Sci. Lett., 371-372 (C), 16-25, doi: 10.1016/j.epsl.2013.04.022.
Howat, I. M., I. Joughin, M. Fahnestock, B. E. Smith, and, T. A. Scambos, (2008), Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000-06: Ice dynamics and coupling to climate, J. Glaciol., 54 (187), 646-660.
Howat, I. M., J. E. Box, Y. Ahn, A. Herrington, and, E. M. McFadden, (2010), Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland, J. Glaciol., 56 (198), 601-613.
IPCC (2013), Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by, T. F. Stocker, et al., Cambridge Univ. Press, Cambridge, U. K., and New York.
Joughin, I., (2002), Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach, Ann. Glaciol., 34, 195-201.
Joughin, I., I. Howat, R. B. Alley, G. Ekstrom, M. Fahnestock, T. Moon, M. Nettles, M. Truffer, and, V. C. Tsai, (2008a), Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland, J. Geophys. Res., 113, F01004, doi: 10.1029/2007JF000837.
Joughin, I., I. M. Howat, M. Fahnestock, B. Smith, W. Krabill, R. B. Alley, H. Stern, and, M. Truffer, (2008b), Continued evolution of Jakobshavn Isbrae following its rapid speedup, J. Geophys. Res., 113, F04006, doi: 10.1029/2008JF001023.
Joughin, I., S. B. Das, M. A. King, B. E. Smith, I. M. Howat, and, T. Moon, (2008c), Seasonal speedup along the western flank of the Greenland Ice Sheet, Science, 320 (5877), 781-783, doi: 10.1126/science.1153288.
Joughin, I., B. E. Smith, I. M. Howat, T. A. Scambos, and, T. Moon, (2010), Greenland flow variability from ice-sheet-wide velocity mapping, J. Glaciol., 56 (197), 415-430.
Joughin, I., R. B. Alley, and, D. M. Holland, (2012), Ice-sheet response to oceanic forcing, Science, 338 (6111), 1172-1176, doi: 10.1126/science.1226481.
Joughin, I., S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. Van Den Broeke, and, J. H. van Angelen, (2013), Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability, The Cryosphere, 7 (4), 1185-1192, doi: 10.5194/tc-7-1185-2013.
Joughin, I., B. E. Smith, D. E. Shean, and, D. Floricioiu, (2014), Brief Communication: Further summer speedup of Jakobshavn Isbræ, The Cryosphere, 8 (1), 209-214, doi: 10.5194/tc-8-209-2014.
Khan, S. A., et al. (2014), Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming, Nat. Clim. Change, 4 (4), 292-299, doi: 10.1038/nclimate2161.
Lenaerts, J. T. M., J. H. van Angelen, M. R. van den Broeke, A. S. Gardner, B. Wouters, and, E. van Meijgaard, (2013), Irreversible mass loss of Canadian Arctic Archipelago glaciers, Geophys. Res. Lett., 40, 870-874, doi: 10.1002/grl.50214.
Meierbachtol, T., J. Harper, and, N. Humphrey, (2013), Basal drainage system response to increasing surface melt on the Greenland ice sheet, Science, 341 (6147), 777-779, doi: 10.1126/science.1235905.
Moon, T., (2014), Greenland outlet glacier behavior during the 21st century: Understanding velocities and environmental factors, PhD thesis, Earth and Space Sciences, Univ. of Washington, Seattle, Wash.
Moon, T., and, I. Joughin, (2008), Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007, J. Geophys. Res., 113, F02022, doi: 10.1029/2007JF000927.
Moon, T., I. Joughin, B. Smith, and, I. Howat, (2012), 21st-century evolution of Greenland outlet glacier velocities, Science, 336 (6081), 576-578, doi: 10.1126/science.1219985.
Nick, F. M., A. Vieli, I. M. Howat, and, I. Joughin, (2009), Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2 (2), 110-114, doi: 10.1038/ngeo394.
Podrasky, D., M. Truffer, M. Fahnestock, J. M. Amundson, R. Cassotto, and, I. Joughin, (2012), Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland, J. Glaciol., 58 (212), 1212-1226, doi: 10.3189/2012JoG12J065.
Rennermalm, A. K., et al. (2013), Understanding Greenland ice sheet hydrology using an integrated multi-scale approach, Environ. Res. Lett., 8 (1), 015017, doi: 10.1088/1748-9326/8/1/015017.
Sasgen, I., M. Van Den Broeke, J. L. Bamber, E. Rignot, L. S. Sørensen, B. Wouters, Z. Martinec, I. Velicogna, and, S. B. Simonsen, (2012), Timing and origin of recent regional ice-mass loss in Greenland, Earth Planet. Sci. Lett., 333, 293-303, doi: 10.1016/j.epsl.2012.03.033.
Savitzky, A., and, M. J. Golay, (1964), Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 36 (8), 1627-1639.
Shepherd, A., et al. (2012), A reconciled estimate of ice-sheet mass balance, Science, 338 (6111), 1183-1189, doi: 10.1126/science.1228102.
Sole, A. J., D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, M. A. King, M. J. Burke, and, I. Joughin, (2011), Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology, J. Geophys. Res., 116, F03014, doi: 10.1029/2010JF001948.
Sole, A., P. Nienow, I. Bartholomew, D. Mair, T. Cowton, A. Tedstone, and, M. A. King, (2013), Winter motion mediates dynamic response of the Greenland ice sheet to warmer summers, Geophys. Res. Lett., 40, 3940-3944, doi: 10.1002/grl.50764.
Straneo, F., and, P. Heimbach, (2013), North Atlantic warming and the retreat of Greenland's outlet glaciers, Nature, 504 (7478), 36-43, doi: 10.1038/nature12854.
Tedesco M., I. C. Willis, M. J. Hoffman, A. F. Banwell, P. Alexander, and, N. S. Arnold, (2013), Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet, Environ. Res. Lett., 8 (3), 034007, doi: 10.1088/1748-9326/8/3/034007.
van Angelen, J. H., M. van den Broeke, B. Wouters, and, J. T. M. Lenaerts, (2013), Contemporary (1960-2012) evolution of the climate and surface mass balance of the Greenland ice sheet, Surv. Geophys., 35, 1155-1174, doi: 10.1007/s10712-013-9261-z.
van As, D., et al. (2014), Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012), J. Glaciol., 60 (220), 314-322, doi: 10.3189/2014JoG13J065.
van Meijgaard, E., L. H. van Ulft, W. J. van de Berg, F. C. Bosveld, B. van den Hurk, G. Lenderink, and, A. P. Siebesma, (2008), The KNMI regional atmospheric climate model RACMO version 2.1, KNMI Tech. Rep. 302, 43 pp., Royal Netherlands Met. Inst., De Bilt, Netherlands.