Article (Scientific journals)
Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer.
Lucia, François; Bourbonne, Vincent; PLEYERS, Clémence et al.
2023In European Journal of Nuclear Medicine and Molecular Imaging
Peer Reviewed verified by ORBi
 

Files


Full Text
s00259-023-06180-w.pdf
Author postprint (846.79 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
18F-FDG PET/CT; Cervical cancer; Digital 18F-FDG PET/CT; MRI; Para-aortic lymph node; Radiomics; Radiology, Nuclear Medicine and imaging; General Medicine
Abstract :
[en] [en] PURPOSE: To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG PET/CT and MRI radiomics combined with clinical parameters. METHODS: We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital 18F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. RESULTS: In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. CONCLUSIONS: Radiomic features extracted from pre-CRT analog and digital 18F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Lucia, François  ;  Centre Hospitalier Universitaire de Liège - CHU ; Radiation Oncology Department, University Hospital, Brest, France. francois.lucia@chu-brest.fr ; LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France. francois.lucia@chu-brest.fr
Bourbonne, Vincent;  Radiation Oncology Department, University Hospital, Brest, France ; LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
PLEYERS, Clémence ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Dupré, Pierre-François;  Department of Gynecology and Surgery, University Hospital, Brest, France
Miranda, Omar;  Radiation Oncology Department, University Hospital, Brest, France
Visvikis, Dimitris;  LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
Pradier, Olivier;  Radiation Oncology Department, University Hospital, Brest, France ; LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
Abgral, Ronan;  Nuclear Medicine Department, University Hospital, Brest, France ; EA GETBO 3878, IFR 148, University of Brest, UBO, Brest, France
Mervoyer, Augustin;  Department of Radiation Oncology, Institut de Cancérologie de l'Ouest Centre René Gauducheau, Saint Herblain, France
Classe, Jean-Marc;  Department of Surgical Oncology, Institut de Cancérologie de l'Ouest Centre René Gauducheau, Saint Herblain, France
Rousseau, Caroline;  Université de Nantes, CNRS, Inserm, CRCINA, F-44000, Nantes, France ; ICO René Gauducheau, F-44800, Saint-Herblain, France
Vos, Wim;  Radiomics SA, Liège, Belgium
HERMESSE, Johanne ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Gennigens, Christine  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service d'oncologie médicale
De Cuypere, Marjolein ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de gynécologie-obstétrique
Kridelka, Frédéric ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de gynécologie-obstétrique
Schick, Ulrike;  Radiation Oncology Department, University Hospital, Brest, France ; LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
Hatt, Mathieu;  LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
Hustinx, Roland  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
Lovinfosse, Pierre ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
More authors (10 more) Less
Language :
English
Title :
Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer.
Publication date :
09 March 2023
Journal title :
European Journal of Nuclear Medicine and Molecular Imaging
ISSN :
1619-7070
eISSN :
1619-7089
Publisher :
Springer Science and Business Media LLC, Germany
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 13 April 2023

Statistics


Number of views
204 (9 by ULiège)
Number of downloads
254 (3 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
2
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi