
Vol.:(0123456789)1 3

European Journal of Nuclear Medicine and Molecular Imaging 
https://doi.org/10.1007/s00259-023-06180-w

ORIGINAL ARTICLE

Multicentric development and evaluation of 18F‑FDG PET/CT and MRI 
radiomics models to predict para‑aortic lymph node involvement 
in locally advanced cervical cancer

François Lucia1,2,3   · Vincent Bourbonne1,2 · Clémence Pleyers4 · Pierre‑François Dupré5 · Omar Miranda1 · 
Dimitris Visvikis2 · Olivier Pradier1,2 · Ronan Abgral6,7 · Augustin Mervoyer8 · Jean‑Marc Classe9 · 
Caroline Rousseau10,11 · Wim Vos12 · Johanne Hermesse4 · Christine Gennigens13 · Marjolein De Cuypere14 · 
Frédéric Kridelka14 · Ulrike Schick1,2 · Mathieu Hatt2 · Roland Hustinx3 · Pierre Lovinfosse3

Received: 4 November 2022 / Accepted: 27 February 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Purpose  To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally 
advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG PET/CT and MRI radiomics combined 
with clinical parameters.
Methods  We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients cor-
responding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment 
analog or digital 18F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. 
Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce 
the batch effect between centers. Different prediction models were trained using a neural network approach with either 
clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared.
Results  In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with 
a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and 
n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 
and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models 
achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with 
C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively.
Conclusions  Radiomic features extracted from pre-CRT analog and digital 18F-FDG PET/CT outperform clinical parameters 
in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our 
models should now be carried out.

Keywords  Radiomics · Cervical cancer · Para-aortic lymph node · 18F-FDG PET/CT · Digital 18F-FDG PET/CT · MRI

Introduction

The standard of care for locally advanced cervical cancer 
(LACC) (FIGO 2018 stage  ≥IB3), is based on radiation 
therapy (RT) combined with concurrent chemotherapy 
(40 mg/m2 cisplatin or carboplatin AUC2 weekly) followed 
by Image Guided Adaptative Brachytherapy (IGABT) [1]. 
Lymph node involvement (LNI) is a major prognostic factor 
in LACC and patients with positive para-aortic lymph nodes 
(PALN) will be treated with an extended field of irradiation 
to the para-aortic region [1]. However, irradiation of these 
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nodes is associated with a significant increase in morbidity, 
with a risk of grade 3 and 4 toxicity in 15% of the patients 
[2]. Thus, it is essential to select the patients who are 
really likely to benefit from PALN irradiation. Current 
recommendations are to first perform a PALN staging by 
18F-FDG PET/CT completed by a PALN dissection for 
patients without PALN involvement (PALNI) on 18F-FDG 
PET/CT [1]. Indeed, the false-negative (FN) rate on 18F-
FDG PET/CT is estimated at 12–20% [3, 4]. However, this 
surgical procedure is associated with high intraoperative 
and postoperative morbidity that may delay the initiation 
of definitive chemoradiotherapy [5]. Moreover, studies have 
reported conflicting results of surgical staging on recurrence-
free survival and overall survival [6, 7]. In this context, the 
question of surgical de-escalation has emerged [6]. Thus, 
development of predictive models using non-invasive tools 
seems necessary to predict PALNI and to assist in decision 
making for extended field irradiation or surgical dissection. 
The FRANCOGYN group proposed a score based on 3 
clinical parameters (MRI tumor size, the initial squamous 
cell carcinoma tumor marker (SCC), and pelvic LNI on 
18F-FDG PET/CT) to classify patients with a squamous cell 
carcinoma, the most common histological type (80–90% of 
cases) followed by adenocarcinoma (10–20% of cases) and 
rare histological types (<5%), into 3 risk groups for PALNI: 
low, intermediate, and high risk [8]. They suggested that 
low-risk patients do not necessitate surgical staging and 
extended-field irradiation, whereas other patients could 
benefit from surgical staging and extended-field irradiation 
for those with PA nodal extension on final histology.

Quantitative analysis of medical images such as 18F-FDG 
PET/CT and MRI have been shown to reflect tumor hetero-
geneity and several predictive and prognostic models, includ-
ing for LACC have been developed [9, 10]. Some models 
have focused on the prediction of pelvic LNI before surgery 
in early-stage cervical cancer [11–15]. However, to the best 
of our knowledge, the added value of radiomic features on the 
prediction of PALNI before CRT to avoid staging dissection 
has never been reported before. Machine learning (ML) meth-
ods, in particular artificial neural networks (ANN) [16, 17], 
allows to build predictive models by combining parameters 
using a flexible nonlinear relationship [18]. In addition, the 
integration of a new type of detectors has allowed the devel-
opment of so-called “digital” PET/CT scanners, replacing the 
classical “analog” PET/CT. Recent studies have shown an 
improvement of image quality and lesion detectability with a 
digital PET/CT system [19]. Thus, digital PET/CT will likely 
gradually replace analog PET/CT, making it necessary to 
evaluate radiomic models on this new generation of PET/CT.

The aim of this study was to develop ML models to predict 
PALNI in patients with LACC using 18F-FDG PET/CT and/
or MRI radiomics features from the primary tumor volume, 
combined (or not) with clinical parameters.

Methods

Patients’ information

Patients with a LACC (FIGO 2018 stage IB3-IVA) who 
underwent a PALN dissection without PALNI on 18F-FDG 
PET/CT at three institutions (University Hospital (CHU) of 
Brest in France, ICO St. Herblain in France, and Univer-
sity Hospital of Liège in Belgium) between 2010 and 2022 
(2012–2022 at the CHU of Brest, 2015–2016 at the ICO 
and 2010–2020 at the CHU of Liège) were retrospectively 
considered (Table 1). All patients underwent a 18F-FDG 
PET/CT and a pelvic MRI, both at diagnosis. Clinical and 
pathological data included age and date of diagnosis, histol-
ogy, FIGO stage (2009 and 2018 before surgical staging), 
presence of positive pelvic LN on PET/CT (according to the 
report of the nuclear physician), tumor size as measured on 
MRI (according to the report of the radiologist). Of the 263 
eligible patients, 24 patients were not included because of 
neoadjuvant chemotherapy (n = 10) or surgical staging not 
feasible during surgery (n = 14) (Fig. 1). Finally, a total of 93 
patients were recruited at the CHU of Brest, 62 patients who 
had an analog PET/CT (2012–2018) and 31 patients who 
had a digital PET/CT (2019–2022) and were included after 
model building for external testing on digital PET/CT, 30 at 
the ICO St Herblain and 116 at the CHU of Liège.

Surgical procedure

The surgery was performed by surgeons specialized in pelvic 
gynecological oncology, with more than 10 years of expe-
rience. After excluding peritoneal invasion, PALN dissec-
tion removed all lymphatic tissue from the aorta, aortocaval 
space, and vena cava using a minimally invasive surgical 
approach. The caudal limit of surgery was the bifurcation 
of the external and internal iliac artery. Cranially, dissection 
was performed to the inferior mesenteric artery or the left 
renal vein at its crossing with the abdominal aorta. If a mac-
roscopically suspicious node was observed, an elective para-
aortic adenectomy was performed and subjected to frozen 
section. PALN dissection was continued only if the frozen 
section was negative for metastases. Pelvic lymphadenec-
tomy was not routinely performed. Involved PALN included 
both macroscopic and microscopic metastases.

PET/CT imaging

PET/CT studies were performed with 3 types of scanners 
and 4 types of acquisition. In the CHU of Brest (between 
2012 and 2018) and ICO St. Herblain studies were per-
formed in both sites with a Siemens Biograph mCT, with 
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however some differences in the acquisition, in the CHU 
of Brest (between 2019 and 2022), studies were acquired 
using a Siemens digital Biograph Vision 600, in the CHU 
of Liège, studies were acquired using a Philips Gemini TF 
or BB (supplemental data A, Table S1).

MRI imaging

All patients underwent pretreatment 1.5 T MRI scans includ-
ing T2-weighted (T2W), and the ADC map derived from 
diffusion-weighted imaging (DWI) (detailed information for 

Table 1   Patients’ characteristics

Abbreviations: FIGO = International Federation of Gynecology and Obstetrics, MRI = magnetic resonance imaging

Training Testing ICO Digital PET/CT Differ-
ence (p 
value)

n = 102 % n = 76 % n = 30 % n = 31 %

Age median (range) 51 (29–79) 52 (26–77) 46 (23–73) 51 (29–70) 0.64
Tumor size on MRI 4.8 (2.6–11.4) 5.1 (1.5–9.2) 4.6 (2.0–11.1) 4.8 (2.9–11.3) 0.81
FIGO stage 0.47
  IB3 11 11 8 10 2 7 0 0
  IIA 3 3 1 1 3 10 1 3
  IIB 33 32 18 24 11 37 7 23
  IIIA 1 1 0 0 1 3 0 0
  IIIB 5 5 2 3 0 0 1 3
  IIIC1 44 43 44 58 12 40 19 61
  IVA 5 5 3 4 1 3 3 10

Histology 0.42
  Squamous cell carcinoma 92 90 67 88 27 90 28 90
  Adenocarcinoma 6 6 5 7 3 10 3 10
  Adenosquamous carcinoma 4 4 4 5 0 0 0 0

Pelvic lymph node involvement 0.26
  Uninvolved 57 56 32 42 17 57 11 35
  Involved 45 44 44 58 13 43 20 65

Para-aortic lymph node involvement 0.57
  Uninvolved 84 82 60 79 24 80 26 84
  Involved 18 18 16 21 6 20 5 16

Fig. 1   Flowchart of patient 
selection at the three recruiting 
institutions (training and testing 
and external evaluation sets)

263 eligible patients
Analog PET/CT Brest cohort n=70
Liège cohort n=126
ICO cohort n=33
Digital PET/CT Brest cohort n=34

239 included patients
Analog PET/CT Brest cohort n=63
Liège cohort n=116
ICO cohort n=30
Digital PET/CT Brest cohort n=31 

Exclusions
Neoadjuvant chemotherapy

Analog PET/CT Brest cohort=3
Liège cohort=5
ICO cohort=1
Digital PET/CT Brest cohort=1

Surgical staging not feasible during surgery

Analog PET/CT Brest cohort=4
Liège cohort=6
ICO cohort=2
Digital PET/CT Brest cohort=2
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MRI scanners and associated parameters in supplemental 
data A, Table S1).

Tumor volume delineation

18F-FDG PET exams were imported into a MIM workstation 
(MIM Software®, Cleveland, OH, USA). Segmentation of 
the 3D primary tumor volume was semi-automatically per-
formed by an experienced radiation oncologist (F.L) using 
a gradient-based method (PET-Edge®) [20].

The primary tumor was also delineated on (i) the ADC 
map derived from DWI-MRI and (ii) T2W-MRI. Each 
sequence was segmented independently because of ana-
tomical changes between each sequence acquisition, using 
a previously validated semi-automatic approach exploiting 
3D Slicer® and the Growcut algorithm [21].

Radiomic features characterization of the tumor 
volumes

Two hundred and seventeen features were extracted from 
the segmented volumes in each image modality using the 
Radiomics toolbox® (Oncoradiomics SA, Liège, Belgium) 
(detailed description of the features in supplemental data 
B). For those standardized by the IBSI (Imaging biomarkers 
standardization initiative), the implementation follows the 
IBSI benchmark [22]. Before calculation, radiomic features 
were extracted after 2 × 2 × 2 mm3 spatial resampling for 
all PET images, and 1 × 1 × 1 mm3 spatial resampling for 
MRI using a cubic spline interpolation. For the calculation 
of the texture matrix-based features, image intensities were 
discretized using two different methods according to IBSI 
recommendations: fixed bin number (FBN, using 32 and 64 
bins) and fixed bin width (FBW 0.25 SUV and 10 for MRI 
ADC as the ADC map is quantitative, but not on the T2 
MRI) [22]. As a result, 1435 radiomics features (198 × 3 
(FBN and FBW value) + 19 = 613 for PET/CT and (153 × 2 
(FBN value) + 19) x 2 (T2W and ADC) and 172 (FBW for 
MRI ADC) = 822 for MRI) were available for each patient.

Modelling strategy

In addition to the radiomic features, data also included 6 
clinical parameters, i.e., FIGO stage 2009 and 2018 before 
surgical staging, histological types (squamous cell carci-
noma, adenocarcinoma, or adenosquamous carcinoma), age, 
presence of lymph node pelvic metastasis on 18F-FDG PET/
CT, and size on MRI measured by radiologist.

We considered the combination of the Brest analog 
PET/CT (2012–2018) and Liège cohorts (Brest-Liège 
cohort) and split it into a training set of 102 patients 
(approximately 60% of the total) and a first testing set of 
76 patients (approximately 40% of the total). The ICO and 

Brest digital PET/CT (2019–2022) cohorts were used for 
further external evaluation (Figure S1, supplemental data 
A).

We tested different approaches for model training and 
testing (Supplemental data C). Indeed, different combi-
nations were tried to find the best compromise to have 
a training dataset with enough events (para-aortic lymph 
node involvement) and avoid overfitting.

A feature set reduction was performed (training data 
set only) to reduce the high number of radiomic features 
and to reduce the risk of overfitting (Supplemental data 
C). Radiomic and Clinical features were entered as input 
into a Neural Network Approach (Multilayer Perceptron 
Network, SPSS Modeler v18.3®) with the Bootstrap 
Aggregating tool to improve stability and robustness 
[17]. Before each model was built, correction for unbal-
anced data was performed using the Synthetic Minority 
Over-sampling Technique-Nominal Continuous (SMOTE-
NC). We trained 3 models: clinical, radiomic, combined. 
The trained models were then evaluated on the testing sets.

Given the number of combinations of PET/CT and MRI 
scanner models and acquisition/reconstruction settings 
present in our multicentric dataset, the ComBat a poste-
riori statistical harmonization method was used [23]. It 
was applied before feature set selection for each approach 
and model building, thus creating 2 additional models: 
ComBat radiomic, ComBat combined. As a result, 5 mod-
els were developed and evaluated. Full description of the 
modelling strategy is available in the supplemental data.

Each model was evaluated using the Area Under the 
Curve (AUC) along with the C-statistic, as well as the 
Balanced Accuracy (Bacc) and associated sensitivity (Se), 
specificity (Sp), number of FN and false-positive (FP) 
after setting a threshold on the training cohort. Importance 
of each feature in each model was also reported. Deci-
sion curve analysis (DCA) was also used for inter-model 
comparison.

We also compared our best models to the available nomo-
gram of FRANCOGYN group. This score applies only to 
squamous cell carcinoma. Moreover, we only had the ini-
tial SCC for patients from analog and digital PET/CT Brest 
cohorts. Thus, we compared the models only on patients 
from Brest with a squamous cell carcinoma.

All the statistical analyses were performed using SPSS® 
(Statistics and Modeler version 24.0 and 18.3, IBM, 
Armonk, NY) and MedCalc® (version 15.8, MedCalc Soft-
ware bvba, Ostend, Belgium).

Ethics committee

The study was approved by the different hospital ethical 
committees.
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Results

Among 239 patients who underwent PALN dissection, 
PALNI was found in 45 patients (19%), 12 patients in 
the analog PET/CT cohort of the CHU of Brest (19%), 5 
patients in the digital PET/CT cohort of the CHU of Brest 
(16%), 6 patients in the ICO cohort (20%), and 22 patients 
at the CHU of Liège (19%).

Models from the Brest‑Liège cohort

The cohort was randomly divided into a training set 
(n = 102) and a testing set (n = 76) who were globally com-
parable in terms of PALNI, with 18/102 (18%) and 16/76 
(21%), respectively (p = 0.76). For radiomic features and 
before statistical harmonization, reduction of the feature 
set on the training set resulted in a preselection of 151 
radiomic features with an AUC  ≥0.70, from PET-CT and 
the T2 sequence. No radiomic features of the ADC map 
was selected. At the second step (Spearman rank corre-
lation coefficient), only eight radiomic features showed 
intra-correlation levels below 0.7 and were subsequently 
used to train the models.

The best clinical model combined 3 features (FIGO 
stage 2018, MRI tumor size and pelvic lymph node on 
PET/CT). The best radiomic and combined models were 
based on 3 (GLDZM_LDE_PET_FBW0.25, Shape_max-
Diameter2D3_PET_FBW0.25, and NGLDM_SM2_PET_
FBW0.25) and 4 (same radiomics features and FIGO stage 
2018) variables, respectively, among which the most 
important one was NGLDM_SM2_PET_FBW0.25 (con-
tribution of 65.3% and 53.7%, respectively).

After ComBat harmonization, the best ComBat-radi-
omic and the ComBat-combined models consisted in the 
association of 2 (GLDZM_HISDE_PET_FBN64 and 
Shape_maxDiameter2D3_PET_FBW0.25) and 3 (the same 
2 radiomic features and the FIGO stage 2018) variables, 
respectively, and the most important feature was GLDZM_
HISDE_PET_FBN64 (71.1% and 67.4%, respectively).

Composition of each model is available in Supplemen-
tal data A, Table S2.

In the training set (n = 102), the clinical model achieved 
a high prediction of the risk of LNI with an AUC of 0.86 
(95% CI 0.78, 0.93) and a C-statistic of 0.80 (95% CI 0.71, 
0.87) with a cut-off of 26%. The radiomic and combined 
models achieved a very good prediction of the risk of 
PALNI with an AUC of 0.88 (95% CI 0.80, 0.94) and a 
C-statistic of 0.83 (95% CI 0.74, 0.90) with a cut-off of 
14% and AUC of 0.90 (95% CI 0.83, 0.97) and a C-statistic 
of 0.81 (95% CI 0.72, 0.88) with a cut-off of 11%, respec-
tively. The ComBat-radiomic and ComBat-combined 

models achieved higher performance with an AUC of 0.95 
(95% CI 0.88, 0.99) and a C-statistic of 0.94 (95% CI 0.87, 
0.97) with a cut-off of 24% and AUC of 0.90 (95% CI 0.83, 
0.97) and a C-statistic of 0.82 (95% CI 0.73, 0.89) with a 
cut-off of 10%, respectively (Table 2).

In the testing (n = 76) and external testing sets (n = 30 
and n = 31), the clinical model predicted the risk of PALNI 
with much lower AUCs of 0.62 to 0.69 (95% CI 0.48, 0.85) 
and C-statistics of 0.57 to 0.67 (95% CI 0.36, 0.83) with a 
cut-off of 26%. The ComBat-radiomic and ComBat-com-
bined models were the most efficient models with AUCs 
of 0.90 to 0.96 (95% CI 0.81, 1.00) for both of them and 
C-statistics of 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 
to 0.92 (95% CI 0.75, 0.99), respectively, with a cut-off of 
24% and 10%, respectively. In comparison, the radiomic 
and combined models resulted in lower (although still much 
higher than clinical only) C-statistics of 0.78 to 0.81 (95% 
CI 0.59, 0.91) and 0.78 to 0.90 (95% CI 0.59, 0.95), respec-
tively. The ComBat-radiomic and ComBat-combined mod-
els were associated with a risk of FN of 0.0% to 12.5% for 
both of them and a risk of FP of 3.8% to 16.7% and 15.4% to 
23.3%, respectively, with their cut-off (Tables 3, 4, and 5).

We evaluate the time needed to apply our model in clini-
cal routine (each step was timed, the reported time is for all 
31 patients): data collection of PET/CT images and clini-
cal parameters (120 min), segmentation (30 min), features 
extraction (10 min), ComBat harmonization (10 min), appli-
cation for a model (10 min) for the 31 patients of the digital 
PET/CT Brest cohort.

For comparison, applied in the CHU of Brest cohort, with 
an analog PET/CT, the predictive score developed by the 
FRANCOGYN allowed a risk of FN of 30% (3/10) and a 
risk of FP of 63% (29/46) while the ComBat-radiomic and 
the ComBat-combined models, both developed in the Brest-
Liège cohort (61% (34/56) patients in the training set and 
39% (22/56) in the testing set, led to a risk of FN of 10% 
(1/10) for both of them and to a risk of FP of 28% (13/46) 
and 24% (11/46), respectively.

Applied in the CHU of Brest cohort with a digital PET/
CT, the predictive score developped by the FRANCOGYN 
allowed a risk of FN of 40% (2/5) and a risk of FP of 65% 
(15/23) while the ComBat-radiomic and the ComBat-com-
bined models expose to a risk of FN of 0% for both of them 
and to a risk of FP of 4% (1/23) and 17% (4/23), respectively.

Finally, DCA revealed that the ComBat models have a 
very good PALNI risk prediction (Fig. 2).

Simulations of the application of our models in clinical 
practice in the overall cohort and in comparison with the 
FRANCOGYN score in the CHU of Brest cohort are given 
in Figs. 3 and 4.

The results after normalization are available in the Sup-
plemental data G.
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Models from the overall cohort, the Brest and Liège 
cohorts

These results are available in the Supplemental data D.

Discussion

Our study identified radiomics-based models built with 
machine learning that could be used in clinical practice to 
predict PALN invasion in LACC and guide clinicians in 
the planning of external beam fields of irradiation, without 
a surgical staging. These 2 models outperform the clini-
cal model and the pre-existing models with a very good 

sensitivity (from 88 to 100%) and a good specificity (from 
77 to 96%).

The standard of care for patients with LACC prior to 
chemoradiotherapy includes a 18F-FDG PET/CT and if no 
PALNI is found, surgical staging may be considered due to 
a FN rate (12 to 20%) with the 18F-FDG PET/CT staging 
[3, 24, 25]. A recent study showed that with modern Time 
of Flight (TOF) 18F-FDG PET/CT, the rate of FN remained 
important [26]. They showed that the FN rate was 8.5 to 10% 
with a FN rate of 3 to 5% in patients without pelvic nodal 
fixation but 15 to 17% in case of pelvic nodal fixation. In 
our study, the rates of FN are consistent with the literature 
with 19% in the overall cohort and 22% in patients with pel-
vic fixation. However, surgical de-escalation is increasingly 
debated [6, 24]. Indeed, some studies have found a benefit 

Fig. 2   Decision curve analysis 
for the training (A) and testing 
(B) sets and external evaluation 
in the ICO (C) and digital PET/
CT (D) cohorts

A

B

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Training

Axe Ref ComBat_Radiomics Clinical ComBat_Combined

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Testing

Axe Ref Combat_Radiomics Clinical Combat_Combined



European Journal of Nuclear Medicine and Molecular Imaging	

1 3

on overall survival and recurrence-free survival of PALN 
dissection as a retrospective study conducted in 10 French 
centers comparing the therapeutic results of 377 patients 
who underwent staging and 270 who did not [7]. However, 
a recent report of the National Cancer DataBase showed 
that surgical staging had no impact on overall survival and 
recurrence-free survival [6]. Moreover, this surgical staging 
may induce perioperative complications that may delay con-
comitant chemoradiotherapy [27]. As a result, in our PET/
CT digital cohort from Brest, the majority of patients had 
pelvic LNI, showing the change in practice in recent years 
where surgical staging is mainly proposed to these patients 
considered to have a higher risk of FN on 18F-FDG PET/
CT. However, the EBRT field depends on this PALN stag-
ing. Indeed, extended field irradiation is performed in case 

of PALNI but lead to a significant increase in the rate of 
gastrointestinal toxicity [2]. Thus, it is essential to develop 
non-invasive tools for accurate PALNI evaluation.

Applying the score of the FRANCOGYN group [8] to 
our analog and digital PET/CT cohorts of squamous cell 
carcinoma in the CHU of Brest, among the 15 patients with 
involved PALN, 5 were in the low-risk group, i.e., 33% FN, 
and among the 69 patients without involved PALN, only 25 
patients were in the low-risk group, i.e., 64% FP. Our 2 mod-
els allowed to drastically improve these performances with 
less FN patients, 7% for both of them and less FP, 20% and 
22%, respectively. These 2 models are interesting because 
they do not require any additional examination, since the 
18F-FDG PET/CT is systematically performed during the 
assessment before CRT. Moreover, these are 2 simple 

C

D
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Fig. 2   (continued)
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models based on 2 radiomic features, possibly associated 
with the FIGO 2018 stage before surgical staging.

Many radiomic studies have focused on the prediction 
of pelvic LNI in early-stage cervical cancer [11–13, 15]; 
however, to the best of our knowledge, the present study is 
the first radiomic study about the prediction of PALNI in 
LACC. A retrospective study of 125 patients with LACC 
and negative PALN uptake on initial 18F-FDG PET/CT 
who underwent para-aortic surgical dissection showed that 
metabolic parameters of the tumor and of the largest pelvic 
adenopathy in case of involvement, could help predict the 
risk of PALNI. The most reliable variable was the pelvic 
lymph node SUVmax/Tumor SUVmax ratio with an AUC of 
0.85. However, this was a single-center study without proper 
training and testing evaluation [28]. Moreover, the small vol-
ume of pelvic lymph nodes hinders an accurate and robust 
extraction of radiomic features. Finally, this is the first study 
to show the applicability of radiomics-based models from 
analog PET/CT to digital PET/CT. Indeed, the development 
of digital PET/CT to improve diagnostic accuracy but also 

to reduce the radiation dose and scan time makes it neces-
sary to validate radiomic models on this new generation of 
PET/CT.

In our study, we used the ComBat harmonization method 
which improved the performance of our models. Indeed, the 
use of the ComBat method is an efficient way of addressing 
this issue with retrospectively collected images because it 
only requires features extracted from patient data acquired 
in different departments, without requiring any phantom 
experiment [23]. A recent study showed that ComBat har-
monization improved the performance of radiomics models 
but more importantly that the improvement was matrix spe-
cific [29]. This is also shown in our results where the predic-
tive value of the GLDZM matrix features was significantly 
improved compared to the NGLDM matrix features.

In our study, no radiomics parameters extracted from the 
ADC map was significant. This result could be explained 
by the different b-values used for the ADC maps [30]. 
The two radiomic features retained in the best models are 
extracted from 18F-FDG PET/CT. The most important, 

A

Low risk of PALNI 
N=173 

PALN dissection Extended field irradiation

No PALN dissection and no 
extended field irradiation

N=23 without PALNI and N=43 
with PALNI

N=23 without PALNI and N=43 
with PALNI

N=171 without PALNI and N=2 
with PALNI

Extended field irradiation
N=43

High risk of PALNI
N=66 

Patients with LACC who underwent 18F-FDG PET/CT
N=239

Fig. 3   Flow diagram of risk-stratification strategy based on pretreat-
ment 18F-FDG PET/CT illustrated in the pooled set after ComBat 
harmonization for radiomics (A) and combined models (B). The first 
step separates patients into two groups: low and high risk of para-
aortic lymph node involvement. Low-risk group would be spared of 
a surgical staging and an extended field irradiation. Thus, unneces-
sary surgical staging would be avoided in 171 (A) or 141 (B) patients 
but 2 (A) or 1 (B) patient with para-aortic lymph node involvement 

(PALNI) would not be treated. High-risk patients could have (i) a 
surgical staging followed by extended field radiotherapy in case of 
PALNI ii) or an extended field irradiation without surgical staging. 
However, 23 or 53 patients would have an unnecessary treatment. In 
total, 2 (A) or 1 (B) patients would not have treatment at the para-
aortic level although they would have needed it but 171 (A) or 141 
(B) patients would be spared of unnecessary treatment
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B

Low risk of PALNI 
N=142 

PALN dissection Extended field irradiation

No PALN dissection and no 
extended field irradiation

N=53 without PALNI and N=44 
with PALNI

N=53 without PALNI and N=44 
with PALNI

N=141 without PALNI and N=1 
with PALNI

Extended field irradiation
N=44 

High risk of PALNI
N=97 

Patients with LACC who underwent 18F-FDG PET/CT
N=239

Fig. 3   (continued)

Fig. 4   Flow diagram of risk-
stratification strategy based on 
pretreatment 18F-FDG PET/CT 
illustrated in the squamous cell 
carcinoma of the CHU of Brest 
cohort for comparison between 
FRANCOGYN score (A) and 
radiomics (B) and combined 
models (C) after ComBat har-
monization. The first step sepa-
rates patients into two groups: 
low and high risk of para-aortic 
lymph node involvement. Low-
risk group would be spared of a 
surgical staging and an extended 
field irradiation. High-risk 
group could have (i) a surgical 
staging followed by extended 
field radiotherapy in case of 
PALNI (ii) or an extended field 
irradiation without surgical 
staging. In total, compared to 
the FRANCOGYN score, our 
models spare surgical stag-
ing (55 or 54 vs 25) and avoid 
under-treatment of a larger 
number of patients (1 vs 5)
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No PALN dissection and no 
extended field irradiation
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N=10

High risk of PALNI
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Patients with LACC who underwent 18F-FDG PET/CT
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B
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extended field irradiation 
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N=14 without PALNI and N=14 
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N=55 without PALNI and N=1 
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Extended field irradiation
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Fig. 4   (continued)
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N=14
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Fig. 4   (continued)
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GLDZM_HISDE_PET_FBN64 (implied in 72.4% and 
66.6% in the ComBat-radiomic and in the ComBat-com-
bined models, respectively), is a textural feature which clas-
sifies heterogeneous tumors as the most likely to develop 
PALNI. This feature has a significant correlation ((ρ) = 0.83) 
with a parameter highlighted in a previous study on the 
prediction of recurrence-free survival in LACC, GLDZM_
DZNN_FBW0.5 [10]. It seems consistent that the risk of 
PALNI and recurrence-free survival are related in view 
of the prognostic impact of LNI. These results emphasize 
on the added value of radiomic features in the evaluation 
of tumor heterogeneity. The other one is a shape feature 
(Shape_maxDiameter2D3_PET_FBW0.25 is the maximum 
diameter is the largest pairwise difference between voxels 
on the surface of the volume in all coronal plans) which 
has a moderate correlation with the tumor size on MRI 
((ρ) = 0.52).

Our study has several limitations. The number of patients 
was limited with few events, which could explain the poorer 
results on the models built on the cohorts independently. 
However, the feature selection step allows to limit the bias 
of testing multiple features.

Its retrospective nature can lead to several biases. First, 
on the quality and type of nodal surgical staging (trans- vs 
extraperitoneal) performed. However, the 3 centers collabo-
rating in our study are reference centers in pelvic gyneco-
logical oncology. Similarly, the likelihood of variability of 
the pathological examination from one center to another and 
its impact on the results observed is limited by the expert 
status of the participating centers and their compliance 
with international recommendations. Neural networks are 
sometimes perceived as “black boxes” impervious to human 
understanding [31]. However, in our 2 most accurate models, 
only 2 radiomics features are retained and their respective 
contributions are made available, which makes the model 
both explainable and interpretable. Another issue with the 
use of neural networks is the need to normalize the features 
before building the models. Indeed, since ranges of features 
are very different, high-value features could affect the classi-
fier performances more than low-value features [32]. In our 
study, we obtained models with same performances, only 
the importance of the features and the cut-offs are slightly 
different (Supplemental data G). One reason for the identical 
results observed could be that very few features are included 
in our models. Another important question in radiomic stud-
ies is the correlation of radiomics features with standard 
metrics (such as SUV measurements or metabolic volume) 
especially in PET. One of the most important confounding 
factors in radiomics studies is the volume (i.e., the number of 
voxels). For PET radiomics specifically, textural features are 
unlikely to provide complementary information with respect 
to volume for the smallest lesions, due to the combination of 
the limited spatial resolution of PET imaging with the large 

voxel size sampling, leading to a small number of voxels to 
perform texture analysis. Recent studies have shown that 
the lower limit actually varies depending on the feature and 
the methodological choices for its calculation, such as the 
grey-levels discretization method or the texture matrices 
design, suggesting a lower limit around 5 to 10 cm3 instead, 
although this may not be applicable to all cases [31, 33]. In 
our study, the range of considered volumes was 8–155 cm3 
with rather large mean and median values of 42 and 28 
cm3 respectively, which corresponds to 1000 voxels for the 
smallest volume but a mean and median number of 5250 and 
3500 voxels respectively. Finally, we included a posteriori 
the patients from the CHU of Brest with digital PET/CT in 
order to validate our best radiomics-based models, without 
recovering the MRI images. Indeed, no radiomics features 
from MRI sequences were retained in the best models.

Moreover, in the case of building a model on a digital 
PET/CT cohort, better results can be expected because 
there would likely be less variability in the acquisition 
parameters than between analog and digital PET/CT. 
However, ComBat harmonization minimized this bias in 
our study, so it would be interesting to compare these 2 
approaches when digital PET/CT becomes more broadly 
used and the data are sufficiently important.

Despite these limitations, our study scores 53% (19 out 
of 36 items) on the radiomic quality score (Supplemental 
data E), which compares favorably to the majority of pre-
vious radiomics studies and follows TRIPOD guidelines 
(Supplemental data F) [34].

Conclusion

Radiomics features extracted from pre-CRT 18F-FDG PET/
CT could outperform clinical variables in the decision to 
individualize the indication of PALN surgical staging 
prior to prescription of an extended field of irradiation to 
PALN. This is the first study to show the applicability of 
radiomics-based models from analog PET/CT to digital 
PET/CT. Prospective validation is necessary.
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