Poster (Scientific congresses and symposiums)
q-deformations of binomial coefficients of words
Renard, Antoine
2023Journées Nationales d'Informatique Mathématique
 

Files


Full Text
Poster_JNIM2023 _ARENARD.pdf
Author postprint (391.11 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Discrete mathematics; Combinatorics on words; q-analog; binomial; p-groups; languages
Abstract :
[en] Let A be a finite alphabet and A^* be the free monoid of words over A with the concatenation product (in other words, A^* is the set of all finite words over A). Generalizing the usual binomial coefficient of integers, the binomial coefficient of two finite words u and v counts the number of occurrences of v as a (scattered) subword of u. The purpose of this work is to properly define a q-deformation of these coefficients, and to investigate their properties. Recall that a q-analog or q-deformation of some mathematical object is a generalization of this one involving a new parameter q, such that the limit for q -> 1 gives back the original object. For example, there exist q-deformed binomial coefficients of integers, also known as Gaussian binomial coefficients. Driven by this idea, we define what we call the q-deformation of the binomial coefficient of words recursively, using a Pascal-like formula: for all words u, v in A^* and all letters a, b in A, \[ \binom{ua}{vb}_q = \binom{u}{vb}_q \cdot q^{|vb|}+\delta_{a,b}\binom{u}{v}_q, \] with initial conditions $\binom{u}{\varepsilon}_q=1$ and $\binom{\varepsilon}{v}_q=0$ if $v\neq\varepsilon$. For instance, one can compute the binomial coefficient of abaabba and abb and find q^10+q^9+q^6+q^4+q^3. We give a combinatorial interpretation of these q-analogs and generalize several classical formulas. We then study a q-deformation of the shuffle and infiltration products of two words. Finally, we consider Eilenberg's theorem characterizing p-group languages in terms of q-deformed binomial coefficients. This is a joint work with Michel Rigo and Markus A. Whiteland.
Disciplines :
Mathematics
Author, co-author :
Renard, Antoine  ;  Université de Liège - ULiège > Mathematics
Language :
English
Title :
q-deformations of binomial coefficients of words
Alternative titles :
[fr] q-déformations de coefficients binomiaux de mots
Publication date :
04 April 2023
Event name :
Journées Nationales d'Informatique Mathématique
Event organizer :
GDR IM
Event place :
Paris, France
Event date :
4 avril 2023
Audience :
International
Funders :
FWB - Fédération Wallonie-Bruxelles
Funding text :
Bourse de 500€ octroyée par la Fédération Wallonie-Bruxelles dans le cadre d'une participation active à un congrès à portée internationale.
Available on ORBi :
since 11 April 2023

Statistics


Number of views
79 (18 by ULiège)
Number of downloads
40 (7 by ULiège)

Bibliography


Similar publications



Contact ORBi