high-throughput sequencing; virome; virus ecology; virus prevalence; virus richness; wild and cultivated Poaceae; Infectious Diseases; Cell Biology; Microbiology (medical); Genetics; General Immunology and Microbiology; Ecology; Physiology
Abstract :
[en] Modern agriculture has influenced plant virus emergence through ecosystem simplification, introduction of new host species, and reduction in crop genetic diversity. Therefore, it is crucial to better understand virus distributions across cultivated and uncultivated communities in agro-ecological interfaces, as well as virus exchange among them. Here, we advance fundamental understanding in this area by characterizing the virome of three co-occurring replicated Poaceae community types that represent a gradient of grass species richness and management intensity, from highly managed crop monocultures to little-managed, species-rich grasslands. We performed a large-scale study on 950 wild and cultivated Poaceae over 2 years, combining untargeted virome analysis down to the virus species level with targeted detection of three plant viruses. Deep sequencing revealed (i) a diversified and largely unknown Poaceae virome (at least 51 virus species or taxa), with an abundance of so-called persistent viruses; (ii) an increase of virome richness with grass species richness within the community; (iii) stability of virome richness over time but a large viral intraspecific variability; and (iv) contrasting patterns of virus prevalence, coinfections, and spatial distribution among plant communities and species. Our findings highlight the complex structure of plant virus communities in nature and suggest the influence of anthropogenic management on viral distribution and prevalence. IMPORTANCE Because viruses have been mostly studied in cultivated plants, little is known about virus diversity and ecology in less-managed vegetation or about the influence of human management and agriculture on virome composition. Poaceae (grass family)-dominated communities provide invaluable opportunities to examine these ecological issues, as they are distributed worldwide across agro-ecological gradients, are essential for food security and conservation, and can be infected by numerous viruses. Here, we used multiple levels of analysis that considered plant communities, individual plants, virus species, and haplotypes to broaden understanding of the Poaceae virome and to evaluate host-parasite richness relationships within agro-ecological landscapes in our study area. We emphasized the influence of grass diversity and land use on the composition of viral communities and their life history strategies, and we demonstrated the complexity of plant-virus interactions in less-managed grass communities, such as the higher virus prevalence and overrepresentation of mixed virus infection compared to theoretical predictions.
Disciplines :
Biotechnology
Author, co-author :
Maclot, François ; Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Debue, Virginie; Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Malmstrom, Carolyn M; Department of Plant Biology and Program in Ecology, Evolution, & Behavior, Michigan State University, East Lansing, Michigan, USA
Filloux, Denis; CIRAD, UMR PHIM, Montpellier, France ; PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier, Montpellier, France
Roumagnac, Philippe; CIRAD, UMR PHIM, Montpellier, France ; PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier, Montpellier, France
Eck, Mathilde; Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Tamisier, Lucie; Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Alexander HM, Mauck KE, Whitfield AE, Garrett KA, Malmstrom CM. 2014. Plant-virus interactions and the agro-ecological interface. Eur J Plant Pathol 138:529-547. https://doi.org/10.1007/s10658-013-0317-1.
González R, Butkovic A, Escaray FJ, Martínez-Latorre J, Melero Í, Pérez-Parets E, Gómez-Cadenas A, Carrasco P, Elena SF. 2021. Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proc Natl Acad Sci U S A 118:e2020990118. https://doi.org/ 10.1073/pnas.2020990118.
Hily J, Poulicard N, Mora M-Á, Pagán I, García-Arenal F. 2016. Environment and host genotype determine the outcome of a plant-virus interaction: from antagonism to mutualism. New Phytol 209:812-822. https://doi.org/10.1111/ nph.13631.
Montes N, Alonso-Blanco C, García-Arenal F. 2019. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathog 15:e1007810. https://doi.org/10.1371/journal.ppat.1007810.
Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A. 2019. Evolution and ecology of plant viruses. Nat Rev Microbiol 17:632-644. https://doi.org/10.1038/s41579-019-0232-3.
Roossinck MJ, García-Arenal F. 2015. Ecosystem simplification, biodiversity loss and plant virus emergence. Curr Opin Virol 10:56-62. https://doi .org/10.1016/j.coviro.2015.01.005.
Elena SF, Fraile A, García-Arenal F. 2014. Evolution and emergence of plant viruses. Adv Virus Res 88:161-191. https://doi.org/10.1016/B978-0-12-800098-4.00003-9.
Stobbe AH, Roossinck MJ. 2014. Plant virus metagenomics: what we know and why we need to know more. Front Plant Sci 5:1-4. https://doi .org/10.3389/fpls.2014.00150.
Muthukumar V, Melcher U, Pierce M, Wiley GB, Roe BA, Palmer MW, Thapa V, Ali A, Ding T. 2009. Non-cultivated plants of the Tallgrass Prairie Preserve of northeastern Oklahoma frequently contain virus-like sequences in particulate fractions. Virus Res 141:169-173. https://doi.org/10 .1016/j.virusres.2008.06.016.
Susi H, Filloux D, Frilander MJ, Roumagnac P, Laine AL. 2019. Diverse and variable virus communities in wild plant populations revealed by metagenomic tools. PeerJ 7:e6140. https://doi.org/10.7717/peerj.6140.
Faust CL, Dobson AP, Gottdenker N, Bloomfield LSP, McCallum HI, Gillespie TR, Diuk-Wasser M, Plowright RK. 2017. Null expectations for disease dynamics in shrinking habitat: dilution or amplification? Philos Trans R Soc Lond B Biol Sci 372:20160173. https://doi.org/10.1098/rstb.2016.0173.
O'Mara FP. 2012. The role of grasslands in food security and climate change. Ann Bot 110:1263-1270. https://doi.org/10.1093/aob/mcs209.
Lapierre S. 2004. Virus and virus diseases of Poaceae (Gramineae). Institut National de la Recherche Agronomique, Paris, France.
Perry KL, Kolb FL, Sammons B, Lawson C, Cisar G, Ohm H. 2000. Yield effects of Barley yellow dwarf virus in soft red winter wheat. Phytopathology 90:1043-1048. https://doi.org/10.1094/PHYTO.2000.90.9.1043.
Alexander HM, Bruns E, Schebor H, Malmstrom CM. 2017. Crop-Associated virus infection in a native perennial grass: reduction in plant fitness and dynamic patterns of virus detection. J Ecol 105:1021-1031. https://doi .org/10.1111/1365-2745.12723.
Malmstrom CM, Hughes CC, Newton LA, Stoner CJ. 2005. Virus infection in remnant native bunchgrasses from invaded California grasslands. New Phytol 168:217-230. https://doi.org/10.1111/j.1469-8137.2005.01479.x.
Malmstrom CM, McCullough A, Johnson H, Newton LA, Borer ET. 2005. Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 145:153-164. https://doi.org/ 10.1007/s00442-005-0099-z.
Bernardo P, Charles-Dominique T, Barakat M, Ortet P, Fernandez E, Filloux D, Hartnady P, Rebelo TA, Cousins SR, Mesleard F, Cohez D, Yavercovski N, Varsani A, Harkins GW, Peterschmitt M, Malmstrom CM, Martin DP, Roumagnac P. 2018. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J 12:173-184. https://doi.org/10.1038/ismej.2017.155.
Malmstrom CM, Busch AK, Cole EA, Trebicki P, Bernardo P, Brown AK, Landis DA, Werling BP. 2022. Emerging wild virus of native grass bioenergy feedstock is well-established in the Midwestern USA and associated with premature stand senescence. GCB Bioenergy 14:463-480. https://doi .org/10.1111/gcbb.12927.
Maclot F, Candresse T, Filloux D, Malmstrom CM, Roumagnac P, van der Vlugt RA, Massart S. 2020. Illuminating an ecological blackbox: using high throughput sequencing to characterize the plant virome across scales. Front Microbiol 11:578064. https://doi.org/10.3389/fmicb.2020.578064.
Roossinck MJ, Saha P, Wiley GB, Quan J, White JD, Lai H, Chavarría F, Shen G, Roe BA. 2010. Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol Ecol 19(Suppl 1):81-88. https://doi.org/ 10.1111/j.1365-294X.2009.04470.x.
Ma Y, Marais A, Lefebvre M, Faure C, Candresse T. 2020. Metagenomic analysis of virome cross-Talk between cultivated Solanum lycopersicum and wild Solanum nigrum. Virology 540:38-44. https://doi.org/10.1016/j .virol.2019.11.009.
Pagan I, Gonzalez-Jara P, Moreno-Letelier A, Rodelo-Urrego M, Fraile A, Pinero D, Garcia-Arenal F. 2012. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system. PLoS Pathog 8: e1002796. https://doi.org/10.1371/journal.ppat.1002796.
New FN, Brito IL. 2020. What is metagenomics teaching us, and what is missed? Annu Rev Microbiol 74:117-135. https://doi.org/10.1146/annurev-micro-012520-072314.
Susi H, Laine A. 2021. Agricultural land use disrupts biodiversity mediation of virus infections in wild plant populations. New Phytol 230: 2447-2458. https://doi.org/10.1111/nph.17156.
McLeish M, Sacristán S, Fraile A, García-Arenal F. 2017. Scale dependencies and generalism in host use shape virus prevalence. Proc R Soc Lond B Biol Sci 284:20172066. https://doi.org/10.1098/rspb.2017.2066.
Ma Y, Marais A, Lefebvre M, Theil S, Svanella-Dumas L, Faure C, Candresse T. 2019. Phytovirome analysis of wild plant populations: comparison of double-stranded RNA and virion-Associated nucleic acid metagenomic approaches. J Virol 94:e01462-19. https://doi.org/10.1128/JVI.01462-19.
Lefebvre M, Theil S, Ma Y, Candresse T. 2019. The VirAnnot pipeline: A resource for automated viral diversity estimation and operational taxonomy units assignation for virome sequencing data. Phytobiomes J 3: 256-259. https://doi.org/10.1094/PBIOMES-07-19-0037-A.
McLeish MJ, Zamfir AD, Babalola BM, Peláez A, Fraile A, García-Arenal F. 2022. Metagenomics show high spatiotemporal virus diversity and ecological compartmentalisation: virus infections of melon, Cucumis melo, crops, and adjacent wild communities. Virus Evol 8:veac095. https://doi .org/10.1093/ve/veac095.
Maclot FJ, Debue V, Blouin AG, Fontdevila Pareta N, Tamisier L, Filloux D, Massart S. 2021. Identification, molecular and biological characterization of two novel secovirids in wild grass species in Belgium. Virus Res 298: 198397. https://doi.org/10.1016/j.virusres.2021.198397.
Fetters AM, Cantalupo PG, Wei N, Robles MTS, Stanley A, Stephens JD, Pipas JM, Ashman T-L. 2022. The pollen virome of wild plants and its association with variation in floral traits and land use. Nat Commun 13:523. https://doi.org/10.1038/s41467-022-28143-9.
Thapa V, McGlinn DJ, Melcher U, Palmer MW, Roossinck MJ. 2015. Determinants of taxonomic composition of plant viruses at the Nature Conservancy's Tallgrass Prairie Preserve, Oklahoma. Virus Evol 1:7. https://doi .org/10.1093/ve/vev007.
Edgar RC, Taylor J, Lin V, Altman T, Barbera P, Meleshko D, Lohr D, Novakovsky G, Buchfink B, Al-Shayeb B, Banfield JF, de la Peña M, Korobeynikov A, Chikhi R, Babaian A. 2022. Petabase-scale sequence alignment catalyses viral discovery. Nature 602:142-147. https://doi.org/ 10.1038/s41586-021-04332-2.
Ma Y, Fort T, Marais A, Lefebvre M, Theil S, Vacher C, Candresse T. 2021. Leaf-Associated fungal and viral communities of wild plant populations differ between cultivated and natural ecosystems. Plant-Environment Interact 2:87-99. https://doi.org/10.1002/pei3.10043.
Halliday FW, Heckman RW, Wilfahrt PA, Mitchell CE. 2020. Eutrophication, biodiversity loss, and species invasions modify the relationship between host and parasite richness during host community assembly. Glob Chang Biol 26:4854-4867. https://doi.org/10.1111/gcb.15165.
Rottstock T, Joshi J, Kummer V, Fischer M. 2014. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95:1907-1917. https://doi.org/10.1890/ 13-2317.1.
Kamiya T, O'Dwyer K, Nakagawa S, Poulin R. 2014. What determines species richness of parasitic organisms? A meta-Analysis across animal, plant and fungal hosts. Biol Rev Camb Philos Soc 89:123-134. https://doi.org/ 10.1111/brv.12046.
Parratt SR, Numminen E, Laine A-L. 2016. Infectious disease dynamics in heterogeneous landscapes. Annu Rev Ecol Evol Syst 47:283-306. https:// doi.org/10.1146/annurev-ecolsys-121415-032321.
Sullivan LL, Johnson BL, Brudvig LA, Haddad NM. 2011. Can dispersal mode predict corridor effects on plant parasites? Ecology 92:1559-1564. https://doi.org/10.1890/10-1116.1.
Moury B, Fabre F, Hébrard E, Froissart R. 2017. Determinants of host species range in plant viruses. J Gen Virol 98:862-873. https://doi.org/10 .1099/jgv.0.000742.
Dáder B, Then C, Berthelot E, Ducousso M, Ng JCK, Drucker M. 2017. Insect transmission of plant viruses: multilayered interactions optimize viral propagation. Insect Sci 24:929-946. https://doi.org/10.1111/1744-7917 .12470.
Prendeville HR, Ye X, Morris TJ, Pilson D. 2012. Virus infections in wild plant populations are both frequent and often unapparent. Am J Bot 99: 1033-1042. https://doi.org/10.3732/ajb.1100509.
Roossinck MJ. 2015. Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front Microbiol 5:426-438. https://doi .org/10.3389/fmicb.2014.00767.
Shates TM, Sun P, Malmstrom CM, Dominguez C, Mauck KE. 2019. Addressing research needs in the field of plant virus ecology by defining knowledge gaps and developing wild dicot study systems. Front Microbiol 10:1-20. https://doi.org/10.3389/fmicb.2018.03305.
Agrawal AA, Lau JA, Hambäck PA. 2006. Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q Rev Biol 81:349-376. https://doi.org/10.1086/511529.
Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647-652. https://doi.org/10.1038/nature09575.
Wickner RB, Ghabrial SA, Nibert ML, Patterson JL, Wang CC. 2012. Family Totiviridae. Part II: The viruses, p 639-650. In Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Academic Press, Waltham, MA.
Wang Z, Neupane A, Feng J, Pedersen C, Lee Marzano S-Y. 2021. Direct metatranscriptomic survey of the sunflower microbiome and virome. Viruses 13:1867. https://doi.org/10.3390/v13091867.
McLeish MJ, Fraile A, García-Arenal F. 2021. Population genomics of plant viruses: The ecology and evolution of virus emergence. Phytopathology 111:32-39. https://doi.org/10.1094/PHYTO-08-20-0355-FI.
Palanga E, Filloux D, Martin DP, Fernandez E, Gargani D, Ferdinand R, Zabré J, Bouda Z, Neya JB, Sawadogo M, Traore O, Peterschmitt M, Roumagnac P. 2016. Metagenomic-based screening and molecular characterization of cowpea-infecting viruses in Burkina Faso. PLoS One 11: e0165188. https://doi.org/10.1371/journal.pone.0165188.
François S, Filloux D, Fernandez E, Ogliastro M, Roumagnac P. 2018. Viral metagenomics approaches for high-resolution screening of multiplexed arthropod and plant viral communities. Methods Mol Biol 1746:77-95. https://doi.org/10.1007/978-1-4939-7683-9-7.
Massart S, Adams I, Al Rwahnih M, Baeyen S, Bilodeau GJ, Blouin AG, Boonham N, Candresse T, Chandellier A, De Jonghe K, Fox A, Gaafar YZA, Gentit P, Haegeman A, Ho W, Hurtado-Gonzales O, Jonkers W, Kreuze J, Kutjnak D, Landa BB, Liu M, Maclot F, Malapi-Wight M, Maree HJ, Martoni F, Mehle N, Minafra A, Mollov D, Moreira AG, Nakhla M, Petter F, Piper AM, Ponchart JP, Rae R, Remenant B, Rivera Y, Rodoni B, Botermans M, Roenhorst JW, Rollin J, Saldarelli P, Santala J, Souza-Richards R, Spadaro D, Studholme DJ, Sultmanis S, van der Vlugt R, Tamisier L, Trontin C, Vazquez-Iglesias I, et al. 2022. Guidelines for the reliable use of high throughput sequencing technologies to detect plant pathogens and pests. Peer Community J 2:e62. https://doi.org/10.24072/pcjournal.181.
Martin M. 2011. Cutadapt removes adapter sequences from high-Throughput sequencing reads. EMBnet j 17:10. https://doi.org/10.14806/ej.17.1.200.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455-477. https://doi.org/10.1089/cmb.2012.0021.
Altschul S, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389-3402. https://doi .org/10.1093/nar/25.17.3389.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797. https://doi .org/10.1093/nar/gkh340.
Edgar RC. 2004. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. https:// doi.org/10.1186/1471-2105-5-113.
Roossinck MJ. 2010. Lifestyles of plant viruses. Philos Trans R Soc Lond B Biol Sci 365:1899-1905. https://doi.org/10.1098/rstb.2010.0057.
Oñate-Sánchez L, Vicente-Carbajosa J. 2008. DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1:93. https://doi.org/10.1186/1756-0500-1-93.
Perry JN. 1995. Spatial analysis by distance indices. J Anim Ecol 64:303. https://doi.org/10.2307/5892.
Perry JN, Hewitt M. 1991. A new index of aggregation for animal counts. Biometrics 47:1505-1518. https://doi.org/10.2307/2532402.
Perry JN. 1998. Measures of spatial pattern for counts. Ecology 79: 1008-1017. https://doi.org/10.1890/0012-9658(1998)079[1008:MOSPFC]2.0 .CO;2.
Besag J, Diggle PJ. 1977. Simple Monte Carlo tests for spatial pattern. Appl Stat 26:327. https://doi.org/10.2307/2346974.
Perry JN, Dixon PM. 2002. A new method to measure spatial association for ecological count data. Ecoscience 9:133-141. https://doi.org/10.1080/ 11956860.2002.11682699.