[en] The key role of symbiotic skin bacteria communities in amphibian resistance to emerging pathogens is well recognized, but factors leading to their dysbiosis are not fully understood. In particular, the potential effects of population translocations on the composition and diversity of hosts' skin microbiota have received little attention, although such transfers are widely carried out as a strategy for amphibian conserva-tion. To characterize the potential reorganization of the microbiota over such a sudden environmental change, we conducted a common- garden experiment simulating reciprocal translocations of yellow- spotted salamander larvae across three lakes. We sequenced skin microbiota samples collected before and 15 days after the transfer. Using a database of antifungal isolates, we identified symbionts with known func-tion against the pathogen Batrachochytrium dendrobatidis, a major driver of amphibian declines. Our results indicate an important reorganization of bacterial assemblages throughout ontogeny, with strong changes in composition, diversity and structure of the skin microbiota in both control and translocated individuals over the 15 days of monitoring. Unexpectedly, the diversity and community structure of the microbiota were not significantly affected by the translocation event, thus suggesting a strong resilience of skin bacterial communities to environmental change— at least across the time- window studied here. A few phylotypes were more abundant in the microbiota of translocated larvae, but no differences were found among pathogen-i nhibiting sym-bionts. Taken together, our results support amphibian translocations as a promising strategy for this endangered animal class, with limited impact on their skin microbiota.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Fieschi-Méric, Léa ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; ULiège - Université de Liège [BE] > Département de Biologie, Ecologie, Evolution > Laboratoire d'Ecologie et de Conservation des Amphibiens (LECA) ; Laurentian University, Sudbury, Canada > Biology Department
Denoël, Mathieu ✱; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA)
Lesbarrères, David ✱; Biology Department, Laurentian University, Sudbury, Canada ; Environment and Climate Change Canada, Ottawa, Canada
✱ These authors have contributed equally to this work.
Language :
English
Title :
Encouraging news for in situ conservation: Translocation of salamander larvae has limited impacts on their skin microbiota
Antwis, R. E., & Harrison, X. A. (2018). Probiotic consortia are not uniformly effective against different amphibian chytrid pathogen isolates. Molecular Ecology, 27(2), 577–589. https://doi.org/10.1111/mec.14456
Bates, K. A., Clare, F. C., O'Hanlon, S., Bosch, J., Brookes, L., Hopkins, K., McLaughlin, E. J., Daniel, O., Garner, T. W. J., Fisher, M. C., & Harrison, X. A. (2018). Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nature Communications, 9(1), 693. https://doi.org/10.1038/s41467-018-02967-w
Belzer, C., & De Vos, W. M. (2012). Microbes inside—From diversity to function: The case of Akkermansia. The ISME Journal, 6(8), 1449–1458. https://doi.org/10.1038/ismej.2012.6
Bird, A. K., Prado-Irwin, S. R., Vredenburg, V. T., & Zink, A. G. (2018). Skin microbiomes of California terrestrial salamanders are influenced by habitat more than host phylogeny. Frontiers in Microbiology, 9, 442. https://doi.org/10.3389/fmicb.2018.00442
Bletz, M. C., Goedbloed, D. J., Sanchez, E., Reinhardt, T., Tebbe, C. C., Bhuju, S., Geffers, R., Jarek, M., Vences, M., & Steinfartz, S. (2016). Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nature Communications, 7(1), 13699. https://doi.org/10.1038/ncomms13699
Blooi, M., Pasmans, F., Longcore, J. E., der Sluijs, A. S., Vercammen, F., & Martel, A. (2013). Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. Journal of Clinical Microbiology, 51, 4173–4177. https://doi.org/10.1128/JCM.02313-13
Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., Mills, D. A., & Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10(1), 57–59. https://doi.org/10.1038/nmeth.2276
Brucker, R. M., Baylor, C. M., Walters, R. L., Lauer, A., Harris, R. N., & Minbiole, K. P. C. (2008). The identification of 2,4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus. Journal of Chemical Ecology, 34(1), 39–43. https://doi.org/10.1007/s10886-007-9352-8
Brunner, J., Barnett, K., Gosier, C., Mcnulty, S., Rubbo, M., & Kolozsvary, M. (2011). Ranaviruses in vernal pool amphibian die-offs in New York state. Herpetological Review, 42, 76–79.
Brunner, J. L., Olson, D. H., Gray, M. J., Miller, D. L., & Duffus, A. L. J. (2021). Global patterns of ranavirus detections. FACETS, 6, 912–924. https://doi.org/10.1139/facets-2020-0013
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
Cameron, E. S., Schmidt, P. J., Tremblay, B. J.-M., Emelko, M. B., & Müller, K. M. (2021). Enhancing diversity analysis by repeatedly rarefying next generation sequencing data describing microbial communities. Scientific Reports, 11(1), 22302. https://doi.org/10.1038/s41598-021-01636-1
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303
Cardiel, B., Ginzburg, O., Hedquist, V., Rigos, J., & Valtierra, H. (2008). Emerging infectious diseases, globalization, and decreasing biodiversity. Journal of the Washington Academy of Sciences, 94(1), 9–20.
Carey, C., Cohen, N., & Rollins-Smith, L. (1999). Amphibian declines: An immunological perspective. Developmental & Comparative Immunology, 23(6), 459–472. https://doi.org/10.1016/S0145-305X(99)00028-2
Carthey, A. J. R., Blumstein, D. T., Gallagher, R. V., Tetu, S. G., & Gillings, M. R. (2020). Conserving the holobiont. Functional Ecology, 34(4), 764–776. https://doi.org/10.1111/1365-2435.13504
Chong, R., Grueber, C. E., Fox, S., Wise, P., Barrs, V. R., Hogg, C. J., & Belov, K. (2019). Looking like the locals—Gut microbiome changes post-release in an endangered species. Animal Microbiome, 1(1), 8. https://doi.org/10.1186/s42523-019-0012-4
Crawshaw, L., Buchanan, T., Shirose, L., Palahnuk, A., Cai, H. Y., Bennett, A. M., Jardine, C. M., & Davy, C. M. (2022). Widespread occurrence of Batrachochytrium dendrobatidis in Ontario, Canada, and predicted habitat suitability for the emerging Batrachochytrium salamandrivorans. Ecology and Evolution, 12(4), e8798. https://doi.org/10.1002/ece3.8798
Croswell, A., Amir, E., Teggatz, P., Barman, M., & Salzman, N. H. (2009). Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric salmonella infection. Infection and Immunity, 77(7), 2741–2753. https://doi.org/10.1128/IAI.00006-09
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome, 6(1), 226. https://doi.org/10.1186/s40168-018-0605-2
Esser, D., Lange, J., Marinos, G., Sieber, M., Best, L., Prasse, D., Bathia, J., Rühlemann, M. C., Boersch, K., Jaspers, C., & Sommer, F. (2019). Functions of the microbiota for the physiology of animal metaorganisms. Journal of Innate Immunity, 11(5), 393–404. https://doi.org/10.1159/000495115
Federici, E., Rossi, R., Fidati, L., Paracucchi, R., Scargetta, S., Montalbani, E., Franzetti, A., Porta, G. L., Fagotti, A., Simoncelli, F., Cenci, G., & Rosa, I. D. (2015). Characterization of the skin microbiota in Italian stream frogs (Rana italica) infected and uninfected by a cutaneous parasitic disease. Microbes and Environments, 30(3), 262–269. https://doi.org/10.1264/jsme2.ME15041
Fisher, M. C., & Garner, T. W. J. (2020). Chytrid fungi and global amphibian declines. Nature Reviews Microbiology, 18(6), 332–343. https://doi.org/10.1038/s41579-020-0335-x
Fites, J. S., Ramsey, J. P., Holden, W. M., Collier, S. P., Sutherland, D. M., Reinert, L. K., Gayek, A. S., Dermody, T. S., Aune, T. M., Oswald-Richter, K., & Rollins-Smith, L. A. (2013). The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science, 342(6156), 366–369. https://doi.org/10.1126/science.1243316
Ford, C. E., Garner, T. J., Balloux, F., & Nichols, R. A. (2022). Non-lethal sampling: Detecting ranaviruses in UK native amphibian species (Rana temporaria and Bufo bufo). Presented at GARD First Global Amphibian & Reptile Disease Conference, Knoxville, Tennessee, USA. August 2022.
Freda, J. (1983). Diet of larval Ambystoma maculatum in New Jersey. Journal of Herpetology, 17(2), 177–179. https://doi.org/10.2307/1563460
Fukami, T. (2015). Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology Evolution and Systematics, 46(1), 1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340
Gao, C.-H., Yu, G., & Cai, P. (2021). ggVennDiagram: An intuitive, easy-to-use, and highly customizable r package to generate venn diagram. Frontiers in Genetics, 12, 706907. https://doi.org/10.3389/fgene.2021.706907
Gray, M. J., Miller, D. L., & Hoverman, J. T. (2012). Reliability of non-lethal surveillance methods for detecting ranavirus infection. Diseases of Aquatic Organisms, 99(1), 1–6. https://doi.org/10.3354/dao02436
Griffiths, S. M., Harrison, X. A., Weldon, C., Wood, M. D., Pretorius, A., Hopkins, K., Fox, G., Preziosi, R. F., & Antwis, R. E. (2018). Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian. The ISME Journal, 12(10), 2506–2517. https://doi.org/10.1038/s41396-018-0167-0
Hallinger, M. J., Taubert, A., & Hermosilla, C. (2020). Endoparasites infecting exotic captive amphibian pet and zoo animals (Anura, Caudata) in Germany. Parasitology Research, 119(11), 3659–3673. https://doi.org/10.1007/s00436-020-06876-0
Harrison, R. G. (1969). Harrison stages and description of the normal development of the spotted salamander, Amblystoma punctatum (Linn.). In S. Wilens (Ed.), Organization and development of the embryo (pp. 44–66). Yale University Press.
Harrison, X. A., Price, S. J., Hopkins, K., Leung, W. T. M., Sergeant, C., & Garner, T. W. J. (2019). Diversity-stability dynamics of the amphibian skin microbiome and susceptibility to a lethal viral pathogen. Frontiers in Microbiology, 10, 2883. https://doi.org/10.3389/fmicb.2019.02883
Hernández-Gómez, O., Kimble, S. J., Briggler, J. T., & Williams, R. N. (2017). Characterization of the cutaneous bacterial communities of two giant salamander subspecies. Microbial Ecology, 73(2), 445–454. https://doi.org/10.1007/s00248-016-0859-9
IUCN/SSC. (2013). Guidelines for reintroductions and other conservation translocations (p. 57). IUCNSSC Re-Introductions Specialist Group.
Jiménez, R. R., & Sommer, S. (2017). The amphibian microbiome: Natural range of variation, pathogenic dysbiosis, and role in conservation. Biodiversity and Conservation, 26(4), 763–786. https://doi.org/10.1007/s10531-016-1272-x
Kassambara, A. (2019). Ggpubr: 'ggplot2' based publication ready plots. R Package Version 0.2. https://CRAN.R-project.org/package=ggpubr
Kriger, K., Hero, J., & Ashton, K. (2006). Cost efficiency in the detection of chytridiomycosis using PCR assay. Diseases of Aquatic Organisms, 71, 149–154. https://doi.org/10.3354/dao071149
Kueneman, J., Bletz, M., Becker, M., Gratwicke, B., Garcés, O. A., Hertz, A., Holden, W. M., Ibáñez, R., Loudon, A., McKenzie, V., Parfrey, L., Sheafor, B., Rollins-Smith, L. A., Richards-Zawacki, C., Voyles, J., & Woodhams, D. C. (2022). Effects of captivity and rewilding on amphibian skin microbiomes. Biological Conservation, 271, 109576. https://doi.org/10.1016/j.biocon.2022.109576
Kueneman, J. G., Parfrey, L. W., Woodhams, D. C., Archer, H. M., Knight, R., & McKenzie, V. J. (2014). The amphibian skin-associated microbiome across species, space and life history stages. Molecular Ecology, 23(6), 1238–1250. https://doi.org/10.1111/mec.12510
Lauer, A., Simon, M. A., Banning, J. L., Lam, B. A., & Harris, R. N. (2008). Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. The ISME Journal, 2(2), 145–157. https://doi.org/10.1038/ismej.2007.110
Leung, W. T. M., Thomas-Walters, L., Garner, T. W. J., Balloux, F., Durrant, C., & Price, S. J. (2017). A quantitative-PCR based method to estimate ranavirus viral load following normalisation by reference to an ultraconserved vertebrate target. Journal of Virological Methods, 249, 147–155. https://doi.org/10.1016/j.jviromet.2017.08.016
Libertucci, J., & Young, V. B. (2019). The role of the microbiota in infectious diseases. Nature Microbiology, 4(1), 35–45. https://doi.org/10.1038/s41564-018-0278-4
Linhoff, L. J., Soorae, P. S., Harding, G., Donnelly, M. A., Germano, J. M., Hunter, D. A., McFadden, M., Mendelson, J. R., III, Pessier, A. P., Sredl, M. J., & Eckstut, M. E. (eds.). (2021). IUCN guidelines for amphibian reintroductions and other conservation translocations (1st ed.). IUCN.
Longcore, J. E., Pessier, A. P., & Nichols, D. K. (1999). Batrachochytrium dendrobatidis gen. Et sp. nov., a chytrid pathogenic to amphibians. Mycologia, 91(2), 219–227. https://doi.org/10.1080/00275514.1999.12061011
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., & Knight, R. (2011). UniFrac: An effective distance metric for microbial community comparison. The ISME Journal, 5(2), 169–172. https://doi.org/10.1038/ismej.2010.133
Martel, A., Blooi, M., Adriaensen, C., Van Rooij, P., Beukema, W., Fisher, M. C., Farrer, R. A., Schmidt, B. R., Tobler, U., Goka, K., Lips, K. R., Muletz, C., Zamudio, K. R., Bosch, J., Lötters, S., Wombwell, E., Garner, T. W. J., Cunningham, A. A., Spitzen-van der Sluijs, A., … Pasmans, F. (2014). Wildlife disease. Recent introduction of a chytrid fungus endangers Western palearctic salamanders. Science, 346(6209), 630–631. https://doi.org/10.1126/science.1258268
Martel, A., der Sluijs, A. S., Blooi, M., Bert, W., Ducatelle, R., Fisher, M. C., Woeltjes, A., Bosman, W., Chiers, K., Bossuyt, F., & Pasmans, F. (2013). Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15325–15329. https://doi.org/10.1073/pnas.1307356110
McKenzie, V. J., Bowers, R. M., Fierer, N., Knight, R., & Lauber, C. L. (2012). Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. The ISME Journal, 6(3), 588–596. https://doi.org/10.1038/ismej.2011.129
McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
Morar, N., & Bohannan, B. J. M. (2019). The conceptual ecology of the human microbiome. The Quarterly Review of Biology, 94(2), 149–175. https://doi.org/10.1086/703582
Muletz-Wolz, C. R., Almario, J. G., Barnett, S. E., DiRenzo, G. V., Martel, A., Pasmans, F., Zamudio, K. R., Toledo, L. F., & Lips, K. R. (2017). Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Frontiers in Microbiology, 8, 1551. https://doi.org/10.3389/fmicb.2017.01551
Nolan, E. (2020). Assessing effects of translocation on amphibian chytrid fungus and the cutaneous bacterial assemblage of wild eastern hellbenders (Cryptobranchus alleganiensis alleganiensis). M.S., Tennessee State University. https://www.proquest.com/docview/2521481331/abstract/751C1D66B7744813PQ/1
Oksanen, F. J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'hara, R. B., Simpson, G., & Solymos, P. (2017). vegan: Community Ecology Package. R package Version 2.4-3. https://CRAN.R-project.org/package=vegan
Pessier, A. P. (2014). Chapter 21 - infectious diseases of amphibians: It isn't just redleg anymore. In D. R. Mader & S. J. Divers (Eds.), Current therapy in reptile medicine and surgery (pp. 247–254). W.B. Saunders. https://doi.org/10.1016/B978-1-4557-0893-2.00021-1
Picco, A. M., Brunner, J. L., & Collins, J. P. (2007). Susceptibility of the endangered California Tiger salamander, Ambystoma californiense, to Ranavirus infection. Journal of Wildlife Diseases, 43(2), 286–290. https://doi.org/10.7589/0090-3558-43.2.286
Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35(21), 7188–7196. https://doi.org/10.1093/nar/gkm864
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rebollar, E., Martínez-Ugalde, E., & Orta, A. (2020). The amphibian skin microbiome and its protective role against chytridiomycosis. Herpetologica, 76, 167. https://doi.org/10.1655/0018-0831-76.2.167
Robinson, C. J., Bohannan, B. J. M., & Young, V. B. (2010). From structure to function: The ecology of host-associated microbial communities. Microbiology and Molecular Biology Reviews, 74, 453–476. https://doi.org/10.1128/MMBR.00014-10
Rojas, S., Richards, K., Jancovich, J. K., & Davidson, E. W. (2005). Influence of temperature on Ranavirus infection in larval salamanders Ambystoma tigrinum. Diseases of Aquatic Organisms, 63(2–3), 95–100. https://doi.org/10.3354/dao063095
Rollins-Smith, L. A. (1998). Metamorphosis and the amphibian immune system. Immunological Reviews, 166(1), 221–230. https://doi.org/10.1111/j.1600-065X.1998.tb01265.x
Rollins-Smith, L. A., & Le Sage, E. H. (2021). Batrachochytrium fungi: Stealth invaders in amphibian skin. Current Opinion in Microbiology, 61, 124–132. https://doi.org/10.1016/j.mib.2021.04.002
Sabino-Pinto, J., Galán, P., Rodríguez, S., Bletz, M. C., Bhuju, S., Geffers, R., Jarek, M., & Vences, M. (2017). Temporal changes in cutaneous bacterial communities of terrestrial- and aquatic-phase newts (amphibia). Environmental Microbiology, 19(8), 3025–3038. https://doi.org/10.1111/1462-2920.13762
Sabino-Pinto, J., Martel, A., Pasmans, F., Steinfartz, S., & Vences, M. (2019). Pooling skin swabs does not inhibit qPCR detection of amphibian chytrid infection. PLoS One, 14(4), e0214405. https://doi.org/10.1371/journal.pone.0214405
Sanchez, E., Bletz, M. C., Duntsch, L., Bhuju, S., Geffers, R., Jarek, M., Dohrmann, A. B., Tebbe, C. C., Steinfartz, S., & Vences, M. (2017). Cutaneous bacterial communities of a poisonous salamander: A perspective from life stages, body parts and environmental conditions. Microbial Ecology, 73(2), 455–465. https://doi.org/10.1007/s00248-016-0863-0
Scheele, B. C., Hollanders, M., Hoffmann, E. P., Newell, D. A., Lindenmayer, D. B., McFadden, M., Gilbert, D. J., & Grogan, L. F. (2021). Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. Conservation Science and Practice, 3(11), e524. https://doi.org/10.1111/csp2.524
Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., Acevedo, A. A., Burrowes, P. A., Carvalho, T., Catenazzi, A., De la Riva, I., Fisher, M. C., Flechas, S. V., Foster, C. N., Frías-Álvarez, P., Garner, T. W. J., Gratwicke, B., Guayasamin, J. M., Hirschfeld, M., … Canessa, S. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 363(6434), 1459–1463. https://doi.org/10.1126/science.aav0379
Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145. https://doi.org/10.1038/nbt1486
Srikantiah, P., Lay, J. C., Hand, S., Crump, J. A., Campbell, J., Van Duyne, M. S., Bishop, R., Middendor, R., Currier, M., Mead, P. S., & Mølbak, K. (2004). Salmonella enterica serotype Javiana infections associated with amphibian contact, Mississippi, 2001. Epidemiology & Infection, 132(2), 273–281. https://doi.org/10.1017/S0950268803001638
Standish, I., Leis, E., Schmitz, N., Credico, J., Erickson, S., Bailey, J., Kerby, J., Phillips, K., & Lewis, T. (2018). Optimizing, validating, and field testing a multiplex qPCR for the detection of amphibian pathogens. Diseases of Aquatic Organisms, 129(1), 1–13. https://doi.org/10.3354/dao03230
Stecher, B., & Hardt, W.-D. (2008). The role of microbiota in infectious disease. Trends in Microbiology, 16(3), 107–114. https://doi.org/10.1016/j.tim.2007.12.008
Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. L., & Waller, R. W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783–1786. https://doi.org/10.1126/science.1103538
Thomas, V., Blooi, M., Van Rooij, P., Van Praet, S., Verbrugghe, E., Grasselli, E., Lukac, M., Smith, S., Pasmans, F., & Martel, A. (2018). Recommendations on diagnostic tools for Batrachochytrium salamandrivorans. Transboundary and Emerging Diseases, 65(2), e478–e488. https://doi.org/10.1111/tbed.12787
Trevelline, B. K., Fontaine, S. S., Hartup, B. K., & Kohl, K. D. (2019). Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proceedings of the Royal Society B: Biological Sciences, 286(1895), 20182448. https://doi.org/10.1098/rspb.2018.2448
Uren Webster, T. M., Rodriguez-Barreto, D., Castaldo, G., Gough, P., Consuegra, S., & Garcia de Leaniz, C. (2020). Environmental plasticity and colonisation history in the Atlantic salmon microbiome: A translocation experiment. Molecular Ecology, 29(5), 886–898. https://doi.org/10.1111/mec.15369
van Leeuwen, P., Mykytczuk, N., Mastromonaco, G. F., & Schulte-Hostedde, A. I. (2020). Effects of captivity, diet, and relocation on the gut bacterial communities of white-footed mice. Ecology and Evolution, 10(11), 4677–4690. https://doi.org/10.1002/ece3.6221
Varela, B. J., Lesbarrères, D., Ibáñez, R., & Green, D. M. (2018). Environmental and host effects on skin bacterial community composition in Panamanian frogs. Frontiers in Microbiology, 9, 298. https://doi.org/10.3389/fmicb.2018.00298
Vredenburg, V. T., Briggs, C. J., & Harris, R. N. (2011). Host-pathogen dynamics of amphibian chytridiomycosis: The role of the skin microbiome in health and disease (pp. 342–355). The National Academies Press.
Wake, D. B., & Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 105(Supplement 1), 11466–11473. https://doi.org/10.1073/pnas.0801921105
Walke, J. B., Becker, M. H., Hughey, M. C., Swartwout, M. C., Jensen, R. V., & Belden, L. K. (2017). Dominance-function relationships in the amphibian skin microbiome. Environmental Microbiology, 19(8), 3387–3397. https://doi.org/10.1111/1462-2920.13850
Walke, J. B., Becker, M. H., Loftus, S. C., House, L. L., Cormier, G., Jensen, R. V., & Belden, L. K. (2014). Amphibian skin may select for rare environmental microbes. The ISME Journal, 8(11), 2207–2217. https://doi.org/10.1038/ismej.2014.77
Wan, Y., Huang, M., Xu, X., Cao, X., Chen, H., & Duan, R. (2022). Effects of short-term continuous and pulse cadmium exposure on gut histology and microbiota of adult male frogs (Pelophylax nigromaculatus) during pre-hibernation. Environmental Toxicology and Pharmacology, 94, 103926. https://doi.org/10.1016/j.etap.2022.103926
Warne, R. W., Kirschman, L., & Zeglin, L. (2017). Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integrative and Comparative Biology, 57(4), 786–794. https://doi.org/10.1093/icb/icx100
Warne, R. W., Kirschman, L., & Zeglin, L. (2019). Manipulation of gut microbiota during critical developmental windows affects host physiological performance and disease susceptibility across ontogeny. Journal of Animal Ecology, 88(6), 845–856. https://doi.org/10.1111/1365-2656.12973
Weber, K. A., Hedrick, D. B., Peacock, A. D., Thrash, J. C., White, D. C., Achenbach, L. A., & Coates, J. D. (2009). Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. Applied Microbiology and Biotechnology, 83, 555–565. https://doi.org/10.1007/s00253-009-1934-7
Werner, E. E. (1986). Amphibian metamorphosis: Growth rate, predation risk, and the optimal size at transformation. The American Naturalist, 128(3), 319–341. https://doi.org/10.1086/284565
West, A. G., Waite, D. W., Deines, P., Bourne, D. G., Digby, A., McKenzie, V. J., & Taylor, M. W. (2019). The microbiome in threatened species conservation. Biological Conservation, 229, 85–98. https://doi.org/10.1016/j.biocon.2018.11.016
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org
Woodhams, D. C., Alford, R. A., Antwis, R. E., Archer, H., Becker, M. H., Belden, L. K., Bell, S. C., Bletz, M., Daskin, J. H., Davis, L. R., Flechas, S. V., Lauer, A., Gonzalez, A., Harris, R. N., Holden, W. M., Hughey, M. C., Ibáñez, R., Knight, R., Kueneman, J., … McKenzie, V. (2015). Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens. Ecology, 96(2), 595. https://doi.org/10.1890/14-1837.1
Woodhams, D. C., LaBumbard, B. C., Barnhart, K. L., Becker, M. H., Bletz, M. C., Escobar, L. A., Flechas, S. V., Forman, M. E., Iannetta, A. A., Joyce, M. D., Rabemananjara, F., Gratwicke, B., Vences, M., & Minbiole, K. P. C. (2018). Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microbial Ecology, 75(4), 1049–1062. https://doi.org/10.1007/s00248-017-1095-7
Yao, R., Xu, L., Hu, T., Chen, H., Qi, D., Gu, X., Yang, X., Yang, Z., & Zhu, L. (2019). The “wildness” of the giant panda gut microbiome and its relevance to effective translocation. Global Ecology and Conservation, 18, e00644. https://doi.org/10.1016/j.gecco.2019.e00644
Zhang, W., Li, N., Tang, X., Liu, N., & Zhao, W. (2018). Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii. Ecology and Evolution, 8(9), 4695–4703. https://doi.org/10.1002/ece3.4029
Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiology Reviews, 32(5), 723–735. https://doi.org/10.1111/j.1574-6976.2008.00123.x