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Abstract
The key role of symbiotic skin bacteria communities in amphibian resistance to 
emerging pathogens is well recognized, but factors leading to their dysbiosis are not 
fully understood. In particular, the potential effects of population translocations on 
the composition and diversity of hosts' skin microbiota have received little attention, 
although such transfers are widely carried out as a strategy for amphibian conserva-
tion. To characterize the potential reorganization of the microbiota over such a sud-
den environmental change, we conducted a common-garden experiment simulating 
reciprocal translocations of yellow-spotted salamander larvae across three lakes. We 
sequenced skin microbiota samples collected before and 15 days after the transfer. 
Using a database of antifungal isolates, we identified symbionts with known func-
tion against the pathogen Batrachochytrium dendrobatidis, a major driver of amphibian 
declines. Our results indicate an important reorganization of bacterial assemblages 
throughout ontogeny, with strong changes in composition, diversity and structure of 
the skin microbiota in both control and translocated individuals over the 15 days of 
monitoring. Unexpectedly, the diversity and community structure of the microbiota 
were not significantly affected by the translocation event, thus suggesting a strong 
resilience of skin bacterial communities to environmental change—at least across the 
time-window studied here. A few phylotypes were more abundant in the microbiota 
of translocated larvae, but no differences were found among pathogen-inhibiting sym-
bionts. Taken together, our results support amphibian translocations as a promising 
strategy for this endangered animal class, with limited impact on their skin microbiota.
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1  |  INTRODUC TION

Amphibians are currently the most endangered animal class on earth, 
with over one third of extant species threatened with extinction 
(Stuart et al.,  2004). Among many other threats, the rapid spread 
of emerging diseases, facilitated by globalization, animal trade and 
climate change, is outstandingly preoccupying (Cardiel et al., 2008; 
Wake & Vredenburg, 2008). For example, the deadly “chytridiomy-
cosis” has caused mass amphibian die-offs worldwide, with declines 
in over 500 amphibian species, including 90 presumed extinctions 
in the last 50 years (Scheele et al., 2019). This disease is caused by 
two fungi, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium 
salamandrivorans (Bsal), which disrupt the amphibian skin and impair 
its essential homeostatic functions, leading to the death of heavily 
infected individuals (Fisher & Garner, 2020; Longcore et al., 1999; 
Martel et al., 2013). Interestingly, both pathogens can suppress im-
mune responses in their host (Fites et al., 2013; Rollins-Smith & Le 
Sage,  2021), and the resistance observed in some amphibians has 
been suggested to arise from bacterial symbionts present on their 
skin (Rebollar et al., 2020; Vredenburg et al., 2011).

The role of resident micro-organisms on the health and resis-
tance of their host to infectious diseases is increasingly recognized 
(Libertucci & Young, 2019; Stecher & Hardt, 2008). In this context, 
several species of bacteria that produce metabolites inhibiting the 
growth of amphibian pathogenic fungi have been identified (Brucker 
et al., 2008; Lauer et al., 2008; Woodhams et al., 2018). However, 
these symbionts are not present in all amphibians: the composition 
and diversity of amphibian skin bacterial communities, referred to as 
“skin microbiota,” varies between species, individuals and even life 
stages (Jiménez & Sommer,  2017; Kueneman et al.,  2014; Sabino-
Pinto et al.,  2017). As a consequence, slight differences in micro-
biota structure among populations from the same species can be 
associated with divergent disease outcomes (Bates et al.,  2018). 
The popularization of high-throughput sequencing of marker genes, 
such as the bacterial 16S rRNA gene, has recently allowed the ex-
tensive characterization of the amphibian microbiota and its natural 
plasticity (Shendure & Ji,  2008). Indeed, amphibian skin microbi-
ota are dynamic, and are influenced by extrinsic factors and by the 
bacteria present in their environment (Harrison et al., 2019; Walke 
et al., 2014). However, strong environmental changes such as habitat 
alteration or pollution can lead to the disruption of the microbiota. 
These alterations, referred to as “dysbiosis,” can have a negative ef-
fect on the host, as they may facilitate infection by opportunistic 
pathogens (Croswell et al., 2009; Jiménez & Sommer, 2017).

In view of global and rapid declines in amphibia, one of the 
most recommended strategies for their conservation consists of 
population translocation, defined by the International Union for 
Conservation of Nature (IUCN) as the “human-mediated movement 
of organisms from one site to another, where the primary objective is a 
conservation benefit” (IUCN/SSC, 2013). Most translocation efforts 
consist of removing individuals from threatened habitats (“mitiga-
tion translocation”) and/or reintroducing populations in sites where 
they have disappeared or are declining (“population restoration”; 

Linhoff et al., 2021). Despite their common use for amphibian con-
servation, translocations have a limited success: only 20% are asso-
ciated with evidence of reproduction during several years following 
release (Scheele et al., 2021). Many translocation failures have been 
attributed to chytridiomycosis (Scheele et al.,  2021): the potential 
increased susceptibility to this disease could result from a strong 
dysbiosis of the skin microbiota caused by rapid habitat change, or, 
conversely, from a lack of adaptation of the microbiota to the new 
environment. Characterizing the dynamics of rearrangement of the 
amphibian skin microbiota following translocations could therefore 
be essential to increase the success of this conservation method.

A few recent studies in diverse taxa have shown the important 
plasticity of gut and skin microbiota in response to translocations. 
Bacterial communities rapidly shift in composition towards a mi-
crobiota similar to that of individuals in the environment of trans-
location, while remaining distinguishable, sometimes for several 
months (Uren Webster et al., 2020; van Leeuwen et al., 2020; Yao 
et al., 2019). In amphibians, scarce evidence suggests that transloca-
tions can induce changes in the structure of bacterial communities 
(Bletz et al., 2016; Kueneman et al., 2022; Nolan, 2020); however, 
their impact on fungi-inhibiting phylotypes remains to be explored.

Here, we translocated yellow-spotted salamander larvae, 
Ambystoma maculatum (Shaw, 1802), using an in situ common-
garden experimental design to investigate the effects of this 
conservation method on the amphibian skin microbiota. Indeed, 
amphibian conservation-translocations are often undertaken using 
young life stages to reduce rearing and infrastructure costs (Linhoff 
et al., 2021). In particular, we examined the dynamics of reorganiza-
tion of fungi-inhibiting bacterial communities using the Antifungal 
Isolates Database (which compiles all bacterial sequences known to 
inhibit Bd; Woodhams et al., 2015) to determine whether the trans-
location would cause their dysbiosis and thus infer potential conse-
quences on translocation success. Indeed, while larval A. maculatum 
are probably resistant to Bd, it is unknown whether their resistance 
to this pathogen arises from skin secretions or from symbiotic skin 
bacteria (Crawshaw et al.,  2022; Martel et al.,  2014); in the latter 
scenario, potential variation in the Bd-inhibitory microbiota caused 
by the translocation could have serious implications for their sur-
vival. Since infection status is known to affect bacterial community 
structures, we also screened our samples for the presence of major 
amphibian pathogens (i.e., ranaviruses and chytrids). While probably 
resistant to Bd and Bsal, larval A. maculatum could act as reservoirs 
for these fungi (Crawshaw et al., 2022; Martel et al., 2014), and the 
fact that ranaviruses can be lethal in other Ambystoma suggests 
that yellow-spotted salamanders might also be susceptible to these 
pathogens (Brunner et al., 2011; Picco et al., 2007; Rojas et al., 2005).

We hypothesized that the microbiota of transferred individuals 
would rapidly converge towards that of control individuals in the 
lake of destination. Based on historical records (Brunner et al., 2021; 
Crawshaw et al., 2022), we also expected a low prevalence of patho-
gens in our lakes of interest. As a consequence of the resulting weak 
selection pressure for protective bacteria, we predicted that the 
proportion of Bd-inhibitory phylotypes might be low in our sampled 
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populations. We discuss the possible implications of microbiota re-
structuration on the fitness of their host and the success of popula-
tion translocation as a conservation strategy.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design

Reciprocal transplants were conducted between three lakes in 
Algonquin Provincial Park, Canada: Bat Lake (BL, 45°35′10″N, 
78°31′07″W, 400 m elev.), Lost Ray Lake (LL, 45°35′25″N, 
78°32′13″W, 416 m elev.) and Speckled Trout Lake (SP, 45°31′59″N, 
78°25′28″W, 420 m elev.). These locations were chosen in a radius 
of less than 6 km to reduce uncontrolled climatic variation between 
sites. A total of 63 mesocosms (60 × 20 cm), custom-made from nylon 
bags stitched spread opened inside minnow traps, were equally dis-
tributed between the three lakes. Each mesocosm was attached to a 
stake on the shore, so that two thirds of the volume inside the nylon 
bag were submerged, and a handful of substrate from the lake was 
added to the bottom of each bag. The mesh of the nylon (2 mm in 
diameter) allowed cladocerans and copepods to pass through, thus 
providing food for the salamander larvae (Freda, 1983; Figure 1a).

Twenty-one spotted salamander larvae at developmental stage 
45 (i.e., rod-like “balancers” on either side of the head of the larvae 
still present, and three distinct digits per forelimb; Harrison, 1969) 
were captured in each of the three lakes (n  =  63), by dip-netting 
along the shore on July 28, 2019 (D0). Individuals were measured, 
swabbed (see below) and distributed in the individual mesocosms as 
follows: a third of the larvae remained in their lake of origin as con-
trols, and the rest were translocated equally between the two other 
lakes (Figure  1b). Fifteen days later (D15), all the surviving larvae 
were swabbed again, and brought back to their lake of origin, where 
they were set free (n = 48). None of the larvae reached metamor-
phosis during the course of the experiment.

All the equipment was disinfected with a 3% solution of 
Virkon®S (DuPont) after each use. Our protocol was conducted with 

the approval of the Ontario Ministry of Natural Resources (licence 
no. 1093589) and of Laurentian University's Animal Care Committee 
(protocol no. 2019-02-01).

2.2  |  Sample collection

Our data collection consisted of a noninvasive skin swabbing. Each 
larva was held with a new pair of gloves and gently rubbed with a 
sterile swab (MW100 rayon tipped dry swab, MWE), five times back 
and forth on each side of the flanks (n = 63 + 48 = 111 samples in 
total). Three environmental control samples were collected per lake 
(n = 9 samples in total), by stirring swabs 20 times in the water. All 
swabs were preserved dry, on ice during sampling in the field, at 
−25°C upon arrival in the Algonquin Wildlife Research Station facili-
ties, and at −80°C after being transported to our research labora-
tory, until further processing.

2.3  |  DNA extraction

DNA was extracted from the swabs using the DNeasy PowerSoil Pro 
kit (Qiagen), following the manufacturer's instructions and includ-
ing nontemplate controls (NTCs). The concentration and purity of 
each DNA extract was measured in an A260 absorbance assay using 
a Synergy H1 spectrophotometer (BioTek).

2.4  |  Pathogen screening

Part of the DNA extracted from each swab was used to test the 
presence of ranaviruses and chytrid fungi. Although ranaviruses are 
identified primarily from tissue samples, the use of swabs is also a 
reliable noninvasive sampling method to detect them in amphibians 
(Ford et al., 2022; Gray et al., 2012; Standish et al., 2018). To avoid 
competition for reagents in case pathogen loads were very differ-
ent (Thomas et al., 2018), we ran simplex assays for each pathogen, 

F I G U R E  1  Experimental design. The larvae were individually maintained in custom-made mesocosms, consisting of a nylon bag stitched 
inside a minnow trap, filled with a handful of substrate and submerged to two thirds of its volume. The mesh of the nylon (2 mm ø) allowed 
typical prey to pass through, and thus the larvae could feed on them (a). The experimental plan consisted in capturing and skin-swabbing 
21 larvae per lake (each larva is represented by a single dot) in three lakes of interest (BL, Bat Lake; LL, Lost Ray Lake; SP, Speckled Trout 
Lake), and then proceeding with a reciprocal translocation: for each lake of origin, a third of the larvae remained as controls, and the rest was 
equally divided and moved to the two other lakes. After 15 days, all individuals were swab-sampled again and then returned to their lake of 
origin, where they were set free (b).

40 cm

20 cm

(a) (b)
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following protocols to detect the MCP gene of ranaviruses (Leung 
et al., 2017), the ITS1 rRNA gene of Bd (Kriger et al., 2006) and the 
5.8S rRNA gene of Bsal (Blooi et al., 2013). Because we expected low 
prevalence of chytrids, samples were pooled by five for Bd and for 
Bsal detection (Sabino-Pinto et al., 2019).

All reactions were run in 96-well plates, with triplicates of NTCs 
and of standards in five concentrations (1, 10, 103, 105 and 1010 
genomic equivalents per microlitre). The positive controls were or-
dered as gBlocks (IDT) following a design by Standish et al. (2018). 
Samples were tested in duplicates, randomly assigned to different 
plates—in the event that results from duplicates were inconsistent, a 
third reaction was run and concluded from.

2.5  |  Microbiota sequencing and bioinformatics

Library preparation (using primers 515F and 806R) and community 
amplicon sequencing of the hypervariable V4 region of the 16S rRNA 
gene (~254 bp) were conducted by Metagenom Bio on a MiSeq sys-
tem (Illumina), at a depth of 30,000 reads. Demultiplexed sequences 
were processed using dada2 version 1.8 (Callahan et al., 2016) man-
aged through qiime 2 version 2019.7 (Caporaso et al., 2010). Forward 
and reverse reads were truncated at decreasing quality (respectively 
225 and 175  bp), and chimeric amplicon sequence variants (ASVs) 
were removed by reconstruction against more abundant parent ASVs. 
Taxonomy was assigned to representative sequences using a naive 
Bayesian classifier implemented in qiime 2, trained against SILVA ver-
sion 134, clustered at 99% identity (Pruesse et al., 2007). Assignments 
were accepted above a 0.7 confidence threshold. To identify symbiotic 
phylotypes with known inhibitory activity against Bd (referred to as Bd-
inhibitory), representative sequences were aligned to the Antifungal 
Isolates Database (Woodhams et al., 2015) in qiime 2.

Preprocessing of the sequences was carried out using the R pack-
age phyloseq (McMurdie & Holmes, 2013). Only bacterial sequences 
were kept, and contaminant ASVs identified from NTCs were removed 
using the R package decontam (Davis et al., 2018). To address the un-
even depth of coverage (different library sizes) across samples, we split 
the data set into a low-abundance data set (<20,000 reads per sample) 
in which samples were not normalized but were deleted if they con-
tained fewer than 200 ASVs, and a high-abundance data set (>20,000 
reads per sample) for which all samples were normalized at 20,000 
reads by rarefaction without replacement (Cameron et al.,  2021). 
Spurious ASVs making up <.001% of the total reads were filtered out 
from the data (Bokulich et al., 2013). Eleven salamander samples were 
deleted through the rarefaction process, and the final data set there-
fore comprised 7942 ASVs across a total of 100 salamander samples, 
and 1643 ASVs across a total of nine water samples.

2.6  |  Statistical analysis

Statistical analyses were conducted in the R environment version 
4.1.0 (R Core Team, 2022). All tests described below were conducted 

both on whole bacterial communities and on a subset restricted to 
Bd-inhibitory phylotypes only. Estimates associated with the covari-
ates in all models were deemed significant if associated with a p-
value below a .05 threshold.

Alpha diversity (within-sample diversity) was quantified using 
Chao1 (estimated ASV richness) and Shannon (estimated community 
diversity) indexes, and was investigated using linear models. Briefly, 
a model including the location and the total body length of the lar-
vae as fixed effects was used to determine whether these factors 
influenced the alpha diversity of the microbiota samples collected 
before the translocation (D0). This model showed that body length 
(mean ± SE = 41.58 ± 1.19 mm) had no effect on the alpha diversity 
of the microbiota, and therefore this variable was excluded from 
subsequent models for parsimony purposes. To determine whether 
ontogeny or environmental change had a stronger effect on the 
structure of the skin microbiota, alpha diversity indexes were used 
as response variables in mixed models that included time of sampling 
(D0, D15) and translocation status (translocated, not translocated) 
as binary fixed effects, and initial location (D0) and identity of the 
larvae as random effects. Lastly, to investigate the resilience of the 
microbiota to host translocation, alpha diversity indexes measured 
at the end of the experiment (D15) were used as response variables 
in mixed-models including initial alpha diversity metrics of the same 
individuals (D0) and their translocation status as fixed effects, and 
their initial location (D0) as a random effect. The estimates associ-
ated with the effect of each covariate in these models were tested 
using ANOVAs. If the residuals of the models did not meet the as-
sumptions of normality and of homoscedasticity associated with 
ANOVAs, log-transformations or nonparametric tests (Kruskal–
Wallis [KW] and Wilcoxon-rank-test, followed by Dunn post hoc 
tests when necessary) with Bonferroni correction were used to in-
vestigate the effect of the corresponding covariates separately.

Beta diversity was calculated as the weighted Unifrac distance 
(Lozupone et al.,  2011), and was visualized using principal coordi-
nates analysis (PCoA), built using the R package vegan (Oksanen 
et al.,  2017). Permutational multivariate analyses of variance 
(PERMANOVAs) implemented using the adonis function (n = 9999 
permutations) were used to test similar models as for the alpha 
diversity. Thereby, the effect of site location on the similarity of 
bacterial communities was tested among initial samples (D0); the in-
fluence of time and translocation status on the community structure 
of all microbiota samples was tested with a model including initial 
location (D0) as a block; and the resilience of the microbiota to trans-
location was investigated among final samples (D15) with a model 
including translocation status as a fixed effect and initial location 
as a block. When suitable, pairwise differences between the levels 
of the covariates included in the PERMANOVAs were tested using 
a pairwise adonis test. Differences in within-group variation were 
investigated using a betadisper test. Features differing in abundance 
between initial samples (D0) and control samples (D15), as well as 
between translocated and control larvae (D15), were identified 
using deseq2 on unrarefied data (Love 2014). Shared ASVs between 
populations were visualized using Venn diagrams created in the R 
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package ggvenndiagram (Gao et al., 2021). Other graphical represen-
tations were plotted using the R packages ggplot2 (Wickham, 2016) 
and ggpubr (Kassambara, 2019).

Lastly, we investigated potential drivers of mortality among the 
larvae. A logistic regression (generalized linear model [GLM]) was 
conducted with survival as a binary response, and body length, initial 
alpha diversity, and interaction between initial (D0) and final (D15) 
location as covariates. A pairwise adonis test was used to investigate 
potential initial differences in community structure (D0) between 
the microbiota of larvae that eventually died and that of individuals 
which survived at the end of the experiment (D15). Features differ-
ing in abundance between these two latter groups were identified 
using deseq2 on unrarefied data, separately for each of the three 
populations of salamander larvae. We performed blast searches 
against the NCBI database (www.ncbi.nlm.nih.gov) to obtain more 
information on these differentially abundant features.

3  |  RESULTS

3.1  |  Natural range of spatial variation in the skin 
microbiota of spotted salamander larvae

Each of the three lakes and of their salamander larvae popula-
tions initially (D0) harboured distinct microbiota. The total number 
of ASVs in water samples varied between lakes, with three times 
as many total ASVs in the microbiota of LL as in BL (Appendix S1–
S10A). The total number of phylotypes also varied between sala-
mander larvae populations, but with more total ASVs and more 
Bd-inhibitory ASVs in individuals from BL than in the other lakes 
(Appendix S2). Water samples were dominated by Proteobacteria, 
Actinobacteria and Acidobacteria (Appendix  S1–S10B). Similarly, 
the skin microbiota of all larvae was dominated by Proteobacteria 
(89.5%), but the second most-abundant phyla differed between pop-
ulations, being Bacteroidetes (5.8%) in larvae from BL, Firmicutes 
(3.5%) in larvae from LL and Verrucomicrobia (13.5%) in larvae from 
SP (Figure 2). Moreover, the relative abundance of phylotypes with 

known inhibitory activity against Bd was higher in the microbiota of 
larvae from SP (18%) than from BL (12.5%) or LL (10.8%). Taken to-
gether, Proteobacteria and Bacteroidetes accounted for over 99.5% 
of the Bd-inhibitory phylotypes in the microbiota of the larvae at the 
beginning of the experiment (Figure 3).

Although the alpha diversity of the water's microbiota did not sig-
nificantly differ between the three lakes (Chao1, ANOVA: F = 1.29, 
df = 2, p = .343; Shannon, ANOVA: F = 3.29, df = 2, p = .108), bacte-
rial community richness of the skin microbiota of salamander larvae 
initially differed among populations (KW: χ2 = 13.07, df = 2, p = .001; 
Figure 4a). Post hoc Dunn tests showed that individuals from LL had 
significantly poorer communities than individuals from BL (Dunn: 
z = −2.62, p = .013) and SP (Dunn: z = −3.44, p = .001), while these 
latter had similar richness (Dunn: z = 1.02, p = .465). However, alpha 
diversity including abundance (measured with the Shannon index) did 
not differ between the three populations (ANOVA: F = 1.41, df = 2, 
p = .252; Figure 4b). More specifically, the alpha diversity of the Bd-
inhibitory bacterial communities present within the microbiota of 
the larvae did not differ across sites (Chao1, KW: χ2 = 5.68, df = 2, 
p = .058; Shannon, ANOVA: F = 2.19, df = 2, p = .122; Appendix S3). 
Among these initial microbiota samples, alpha diversity was not in-
fluenced by the body size of the larvae (Chao1, Pearson: t = −0.85, 
df = 55, p = .399; Shannon, ANOVA: F = 1.79, df = 1, p = .187).

The microbiota of the water from the three sites differed strongly 
in beta diversity (PERMANOVA: F = 3.03, R2 = .50, df = 2, p = .046) 
because of significant differences in the abundance of several ASVs 
(Appendix  S1–S10C), but did not vary in compositional variance 
(Betadisper: F = 0.51, df = 2, p = .570). The beta diversity of initial 
skin bacterial communities differed between all salamander larvae 
populations, with the location of the individuals explaining over 17% 
of the variation in composition among initial microbiota samples 
(PERMANOVA: F = 5.68, df = 2, p < .001). Nevertheless, the com-
positional variance of the microbiota was homogenous across the 
three populations (Betadisper: F = 0.56, df = 2, p = .578). Similarly, 
the composition of Bd-inhibitory bacterial communities was signifi-
cantly different across populations, as location explained 20% of the 
variation in beta diversity across samples (PERMANOVA: F = 6.86, 

F I G U R E  2  Mean relative abundance of the most frequent bacterial phylotypes in the skin microbiota of yellow-spotted salamander 
larvae, at the phylum level. Samples are grouped according to their experimental status (INI, initial sampling at D0; CTRL, control samples at 
D15; BL, transferred samples originating from BL; LL, transferred samples originating from LL; SP, transferred samples originating from SP) 
and sampling location (BL, Bat Lake; LL, Lost Ray Lake; SP, Speckled Trout Lake). Dominant phyla are identified in the key.
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df  =  2, p < .001). The compositional variance of Bd-inhibitory bac-
terial communities was significantly higher in larvae from BL than 
within individuals from LL (Betadisper: F = 6.32, df = 2, p =  .002; 
Appendix S4).

3.2  |  Relative effects of temporal variation and 
habitat-translocation on the skin microbiota of 
spotted salamander larvae

Both ontogeny and the translocation event influenced the composi-
tion of the skin microbiota of the larvae. Indeed, while Proteobacteria 
consistently constituted the majority of phyla at both D0 and D15, 
the second most abundant phyla varied between these time points. 
Moreover, translocated larvae had a different microbiota from 
that of control larvae maintained at the same location (Figure  2; 
Appendix S5). The relative abundance of Bd-inhibitory phylotypes in 
the microbiota of the larvae was differentially affected by the trans-
location, and decreased through time—although it remained lower 

in individuals from LL (2%) compared to individuals from BL (7%) or 
SP (6%; Figure 3).

Regardless of their location, the microbiota of the larvae became 
more diverse within the 15 days of monitoring (Figure 4). Ontogeny 
had a strong and significant effect on the alpha diversity of the 
microbiota (Chao1 ANOVA: F  =  33.33, df  =  1, p < .001; Shannon 
ANOVA: F = 45.95, df = 1, p < .001), while habitat translocation did 
not (Chao1 ANOVA: F  =  .72, df  =  1, p  =  .398; Shannon ANOVA: 
F = 2.76, df = 1, p =  .100). In fact, the alpha diversity of samples 
collected from larvae at D15 was not different between control and 
translocated individuals (ANOVA: Chao1, F = .33, df = 1, p = .570; 
Shannon, F = 2.00, df = 1, p = .167), and was not affected by initial 
(D0) measures of alpha diversity (ANOVA: Chao1, F = 2.31, df = 1, 
p =  .138; Shannon, F = 0.89, df = 1, p =  .353). Similarly, the alpha 
diversity of Bd-inhibitory phylotypes increased significantly through 
time (Chao1 ANOVA: F = 4.32, df = 1, p = .041; Shannon ANOVA: 
F = 18.81, df = 1, p < .001) but was not affected by the transloca-
tion (Chao1 ANOVA: F = 1.58, df = 1, p =  .211; Shannon ANOVA: 
F = 2.96, df = 1, p = .088; Appendix S3). Models restricted to D15 

F I G U R E  3  Mean relative abundance of the main phylotypes with known Bd-inhibitory activity in the skin microbiota of yellow-spotted 
salamander larvae, at the phylum level. Samples are grouped according to their experimental status (INI, initial sampling at D0; CTRL, control 
samples at D15; BL, transferred samples originating from BL; LL, transferred samples originating from LL; SP, transferred samples originating 
from SP) and sampling location (BL, Bat Lake; LL, Lost Ray Lake; SP, Speckled Trout Lake). Dominant phyla are identified in the key.

F I G U R E  4  Alpha diversity of the skin microbiota of yellow-spotted salamander larvae at the beginning (D0, “INI”) and the end (D15, by 
final location: BL, Bat Lake; LL, Lost Ray Lake; SP, Speckled Trout Lake) of the experiment, measured as Chao1 (a) and Shannon (b) indexes. 
The colour code indicates the initial site from where the larvae were collected, at D0. Brackets with asterisks indicate initial significant 
differences in richness between samples from LL and samples from the two other sites.
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data confirmed that the alpha diversity of Bd-inhibitory communi-
ties was not different between control and translocated individu-
als (ANOVA: Chao1, F = 0.78, df = 1, p = .384; Shannon, F = 1.88, 
df = 1, p = .179), and also was not affected by initial (D0) measures of 
alpha diversity (ANOVA: Chao1, F = 0.06, df = 1, p = .810; Shannon, 
F = 0.01, df = 1, p = .908).

Ontogeny was also a stronger driver of host microbiota struc-
ture compared to the environment: the time difference between the 
two sampling events (D0 and D15) explained over 13% of the varia-
tion in beta diversity among all microbiota samples (PERMANOVA: 
F  =  15.34, df  =  1, p < .001) whereas their translocation status ex-
plained less than 0.9% (PERMANOVA: F = 1.02, df = 1, p =  .388; 
Appendix S6). More specifically, at D15, control and translocated in-
dividuals had similar microbiota structure (PERMANOVA, F = 1.11, 
R2  =  .03, df  =  1, p  =  .318; Figure  5) and compositional variance 
(Betadisper: F = 1.90, df = 1, p = .174). Analysis of the full data set also 
showed that the compositional variance of microbiota was not af-
fected by ontogeny (Betadisper: F = 1.24, df = 1, p = .263). Similar 
patterns were observed among protective phylotypes: ontogeny ex-
plained over 17% of the variation in beta diversity of Bd-inhibitory 
bacterial communities among all microbiota samples (PERMANOVA: 
F  =  21.43, df  =  1, p < .001) whereas their translocation status ex-
plained less than 2% (PERMANOVA: F  =  2.10, df  =  1, p  =  .099). 
Analyses restricted specifically to D15 samples confirmed that the 
beta diversity of Bd-inhibitory communities was not affected by the 
translocation (PERMANOVA, F = 2.17, R2 =  .05, df = 1, p =  .104). 
Moreover, the compositional variance of the protective microbiota 
was not affected by time (Betadisper: F = 0.10, df = 1, p = .761) nor 
by the translocation (Betadisper: F = 0.05, df = 1, p = .837).

Differential analyses revealed that the variations in community 
structure of control samples between D0 and D15 were driven by 
changes in abundance of 51 phylotypes, the majority belonging to 
Proteobacteria, but also to Bacteroidetes and Verrucomicrobia. In 
contrast to older samples (D15), the initial skin microbiota of the lar-
vae (D0) showed significantly higher abundances in a bacterium from 
the phylum Verrucomicrobia, and in 11 genera of Proteobacteria 
(Appendix  S7). Among Bd-inhibitory phylotypes, 10 ASVs, all be-
longing to Proteobacteria, were significantly more abundant within 
initial samples (D0; Appendix S8). When comparing the microbiota 
of control and translocated larvae at D15, differential analyses re-
vealed significant differences in the abundance of 13 phylotypes, 
belonging to at least five different bacterial genera from the phyla 
Acidobacteria, Bacteroidetes, Proteobacteria and Verrucomicrobia. 
In contrast to control individuals, translocated larvae had a microbi-
ota enriched in these taxa (Figure 6). However, we did not find any 
Bd-inhibitory phylotypes that differed significantly in abundance be-
tween control and translocated larvae.

3.3  |  Larval mortality and disease screening in 
Algonquin Provincial Park, Canada

Quantitative polymerase chain reactions (PCRs) revealed that all 
samples were clear from ranaviruses and chytrid fungi. Nevertheless, 
24% of the larvae died during the experiment (at D15: nBL  =  3; 
nLL = 2; nSP = 10 dead individuals). Survival was not influenced by 
the body length of the larvae (GLM: β = 0.07, df = 1, p = .354), nor 
by their translocation (GLM: β  =  −0.63, df  =  1, p  =  .496), or their 

F I G U R E  5  PCoA representing the beta diversity (calculated as the weighted Unifrac distance) of the skin microbiota of control vs. 
translocated yellow-spotted salamander larvae, 2 weeks after the translocation (D15). Results are plotted separately in three blocks to 
gather larvae initially coming from the same location (D0). The shape of the datapoints indicates whether they correspond to microbiota of 
control or translocated larvae (Status). The colour code and ellipses indicate the final location of the larvae at D15 (BL, Bat Lake; LL, Lost Ray 
Lake; SP, Speckled Trout Lake). Because of high mortality in larvae originally collected in SP, the number of samples of translocated larvae 
into LL and of control larvae that remained in SP (D15) was too limited to infer ellipses (right panel).
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initial alpha diversity (GLM: β = −0.48, df = 1, p = .273), but it was 
influenced by their location of origin: larvae that were collected in SP 
had significantly lower chances of survival (GLM: β = −2.68, df = 2, 
p = .013), and the odds of surviving were 15.9 times higher for lar-
vae originating from other lakes (Table 1). We found no differences 
in initial community structure (D0) between the larvae that eventu-
ally died and those which survived at D15 (PERMANOVA: F = 0.12, 
df = 1, p = .147).

However, differential analyses revealed that among larvae from 
BL, the microbiota of individuals that died before the end of the ex-
periment was initially (D0) less abundant in 15 ASVs, all belonging 
to Proteobacteria, than that of larvae that survived (Appendix S9). 
More specifically, within the initial Bd-inhibitory microbiota of lar-
vae from BL, two biomarkers (Pseudogulbenkiania sp. and Deefgea 
sp.) were significantly less abundant in larvae that eventually died 
compared to larvae that survived (Appendix  S10). Among larvae 

from LL, individuals that died were initially poorer in two ASVs, 
also belonging to the phylum Proteobacteria. Although their phy-
logenetic assignment using SILVA was limited to the family level 
(Enterobacteriaceae), blast searches suggested these two ASVs may 
be Klebsiella pneumoniae and Salmonella enterica. Among larvae from 
SP, individuals that died had a microbiota initially more abundant in 
two ASVs; blast searches suggested that one of these biomarkers 
may belong to the genus Acidovorax (Appendix S9).

4  |  DISCUSSION

This study adds to our understanding of the organization of bacte-
rial assemblages on the amphibian skin and expands our knowledge 
on the effects of anthropogenic environmental disturbances, such 
as conservation interventions, on animal microbiota. This is of par-
ticular importance for amphibians considering the key roles of their 
skin symbionts in their resistance to deadly skin diseases (Rebollar 
et al.,  2020; Vredenburg et al.,  2011). Taken together, our results 
suggest that population translocations conducted at an early life 
stage have a limited impact on the skin microbiota of amphibians. 
Moreover, the microbiota of salamander larvae seems to be more 
strongly shaped by ontogeny than by their environment. Although 
these observations should be confirmed in other amphibian models, 
our findings support population translocations as a promising strat-
egy for amphibian conservation.

4.1  |  Patterns of spatial and temporal variation in a 
naturally dynamic microbiota

The skin microbiota of yellow-spotted salamander larvae was 
dominated by Proteobacteria, with important proportions of 
Bacteroidetes, Firmicutes and Verrucomicrobia, as reported in 
many other amphibian species (Harrison et al.,  2019; Kueneman 
et al.,  2014; McKenzie et al.,  2012; Sanchez et al.,  2017). It was 

F I G U R E  6  Significant log2 fold 
difference in abundance of bacterial 
phylotypes in the skin microbiota of 
translocated yellow-spotted salamander 
larvae 15 days after their translocation, 
compared to the microbiota of resident 
control larvae, that always remained in the 
same lake (D15). Each point represents 
a phylotype differentially abundant 
between translocated and control 
larvae. The colour code and the columns 
respectively indicate the phylum and the 
genus to which each of these phylotypes 
belongs. Genera that could not be 
identified are indicated as NA.

TA B L E  1  Summary of logistic regression investigating the 
determinants of survival among the larvae at D15.

Estimate SE z-value p-value

(Intercept) 2.11 3.15 0.67 .5030

Initial body length 0.07 0.08 0.93 .3538

Initial alpha diversity −0.47 0.43 −1.10 .2730

Status (TR) −0.63 0.92 −0.68 .4957

Site of origin (LL) −1.63 1.29 −1.26 .2073

Site of origin (SP) −2.68 1.08 −2.48 .0133

Final site (LL) −1.32 1.07 −1.23 .2179

Final site (SP) −1.99 1.03 −1.93 .0531

Note: The estimates are given with their standard error (SE). The 
contrasts used for each categorical predictor are in parentheses. Initial 
body length and initial alpha diversity (measured with the Shannon 
index) were measured at D0. The effect of translocation (TR) was 
contrasted against control larvae at D15. The effects of the sites of 
origin (D0) and of final sampling (D15) were contrasted against BL (BL, 
Bat Lake; LL, Lost Ray Lake; SP, Speckled Trout Lake). The significant 
p-value is in bold type.
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different from that of the water, thus confirming the selectivity of 
the amphibian skin (Walke et al., 2014), and varied in composition, 
richness and beta diversity throughout locations. This was expected 
considering the high sensitivity of the skin microbiota of amphibians 
to environmental factors, which can drive major differences even 
among individuals from the same species (Bird et al., 2018; Varela 
et al., 2018). Indeed, despite similar alpha diversity, the water from 
the three lakes in the study had a distinguishable microbiota struc-
ture, as suggested by their strong variation in beta diversity.

In addition to this spatial diversity, we report a rapid shift in the 
organization of the skin microbiota of salamander larvae through-
out their development. Community richness and diversity increased 
rapidly between stage 45 (D0) and the last stages before metamor-
phosis (D15). Ontogeny is known to affect the gut and mouth mi-
crobiota structure and diversity in frog larvae, but this is the first 
report of a change in such a narrow time frame (Griffiths et al., 2018; 
Warne et al., 2017). We identified many phylotypes that increased 
significantly in abundance between D0 and D15, including several 
Acinetobacter sp. and Pseudomonas sp. Many species in these genera 
are reported to inhibit chytrid fungi growth in vitro (Muletz-Wolz 
et al., 2017); thus, the developmental window between stage 45 and 
metamorphosis could be key in establishing host defences against 
pathogens.

Interestingly, our results show that the initial alpha diversity of 
individual microbiota does not affect their alpha diversity 15 days 
later. The important restructuring of bacterial communities over this 
short time window could be caused by a low selectivity of the larval 
skin at developmental stage 45, or by an increasing availability of 
ecological niches as the larvae grow—although we found no link be-
tween larval body length and alpha diversity of the skin microbiota. 
This counterintuitive result could also be caused by the depletion 
of bacterial communities during the initial sampling, whereby swab-
bing may have prevented other species from colonizing the micro-
biota and/or removed phylotypes that would otherwise have been 
retained in the community at D15 (Fukami, 2015). Considering that 
studies on temporal variation of individual skin microbiota often use 
repeated sampling over short time windows, it could be particularly 
interesting to determine whether they do exactly represent natural 
variation of bacterial communities.

4.2  |  Effects of the translocation on the 
composition and diversity of the skin microbiota

Our findings suggest that the translocation event affected the com-
position, but not the alpha diversity nor the community structure 
(beta diversity) of the skin bacterial communities of salamander lar-
vae. The microbiota of translocated individuals probably retained 
bacteria from their environment of origin while also being colonized 
by species from the site of transfer, as suggested by the numerous 
phylotypes that were significantly more abundant in translocated 
individuals. Interestingly, several of these taxa belonged to gen-
era generally associated with gut microbiota, such as Akkermansia 

sp. (Belzer & De Vos, 2012), Odoribacter sp. and Parabacteroides sp. 
(Wan et al.,  2022; Zhang et al.,  2018). Structural effects of trans-
location on skin bacterial communities, with a global shift towards 
the new environment's microbiota while maintaining microbes from 
the environment of origin, are reported in longer-term studies and 
in a large array of hosts, from Tasmanian devils (Chong et al., 2019), 
to Atlantic salmon fry (Uren Webster et al.,  2020) and hellbender 
salamanders (Nolan, 2020). However, several translocation experi-
ments report that the alpha diversity and community structure of 
microbiota are entirely determined by the environment of destina-
tion of translocated individuals (Bletz et al.,  2016; Uren Webster 
et al.,  2020). In yellow-spotted salamander larvae, we found that 
the skin microbiota was very resilient to environmental change, as 
translocated individuals maintained microbiota of similar alpha and 
beta diversity as control larvae that remained in their lake of origin. 
This confirms that microbial colonization in early life can affect mi-
crobial assemblages in later stages (Robinson et al., 2010; Sanchez 
et al.,  2017; Uren Webster et al.,  2020), and is particularly impor-
tant in the context of amphibian conservation, as the establishment 
of their microbiota during critical developmental windows may af-
fect their later metabolism and susceptibility to diseases (Warne 
et al.,  2019). However, our study only lasted 15 days in order to 
sample the larvae before metamorphosis, as they probably undergo 
tremendous changes in their microbiota when becoming terrestrial 
(Kueneman et al., 2014); it is therefore unknown whether structural 
changes in the microbiota of translocated individuals may have been 
recorded had they been monitored over a longer time window.

4.3  |  Protective phylotypes, susceptibility to 
diseases and mortality

The proportion of Bd-inhibitory phylotypes in the microbiota of our 
experimental larvae was relatively low compared to other amphibian 
taxa (Walke et al., 2017). Considering that all individuals in the study 
were clear from chytrid fungi, this concurs with work from Walke 
et al. (2017) suggesting that selection for inhibitory phylotypes may 
be reduced in populations associated with low pathogen prevalence. 
In comparison with our results, different patterns of microbiota re-
structuring throughout ontogeny or translocation would probably 
be expected in locations with a higher prevalence of ranaviruses and 
chytrid fungi. Regardless, note that most of the phylotypes identified 
within our samples remained untested against Bd (74% at D0 and 
70% in control samples at D15), and that no database was available 
to test their activity against the many other pathogens that threaten 
amphibians (Pessier, 2014) and induce changes in their skin microbial 
communities (Federici et al., 2015; Harrison et al., 2019). Moreover, 
the production and function of microbial secondary metabolites can 
differ among pathogen isolates (Antwis & Harrison, 2018), so 16S 
sequencing is not sufficient to ascertain the antifungal properties of 
the identified phylotypes. Investigating bacterial inhibitory activity 
against a broader range of emerging diseases is therefore urgently 
needed to provide researchers and conservation stakeholders with 
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more exhaustive databases. Nonetheless, the quantification of Bd-
inhibitory bacteria provides important insight into the potential 
trends followed by symbionts with protective activity and might be 
extrapolated to Bsal-inhibitory bacteria because the rare phylotypes 
with known activity against that latter fungus are also inhibitory 
against Bd (Woodhams et al., 2018).

Despite the absence of ranaviruses and chytrid fungi, mortality 
among our study animals was not unexpected since the larvae were 
very close to metamorphosis at the end of the experiment—a life 
period commonly associated with increased mortality in amphibians 
(Carey et al.,  1999; Rollins-Smith, 1998; Werner, 1986). We found 
no link between microbiota diversity or structure and host mortal-
ity, but the larvae originating (D0) from the SP site were associated 
with significantly higher mortality rates than individuals from BL and 
LL. Interestingly, differential abundance analyses revealed that the 
larvae from SP that died before D15 had a microbiota initially (D0) 
enriched in an Acidovorax sp. Although this genus is found in the com-
mensal microflora of other amphibians (Lauer et al., 2008), it is more 
prevalent in individuals infected with Bd (Federici et al., 2015) and 
within skin wounds (Hernández-Gómez et al., 2017). It is therefore 
conceivable that in larvae with elevated abundance of Acidovorax sp., 
the initial (D0) swabbing of their fragile epidermis may have caused 
skin lesions that were aggravated by this bacterium, thus causing the 
death of these individuals. Regardless, the translocation event itself 
was not a cause of mortality, which is encouraging for this conser-
vation strategy. Among the populations from the two other sites, 
some of the less abundant phylotypes in larvae that died compared 
to larvae that survived are taxa commonly found in amphibians (e.g., 
Salmonella enterica; Srikantiah et al., 2004) or in freshwater lake sed-
iments (Pseudogulbenkiania sp.; Weber et al.,  2009), although sur-
prisingly, one of these taxa (Klebsiella pneumoniae) is known to cause 
deadly infections in anuran models (Hallinger et al., 2020); this con-
firms the fact that the impact of each bacterial taxon on its host is 
also dependent on the rest of the microbial community.

5  |  SUMMARY: VIE WING AMPHIBIAN 
CONSERVATION THROUGH A 
MICROSCOPIC LENS

Incorporating host-associated bacterial communities to conserva-
tion research is increasingly recognized as a promising avenue to en-
sure future viability of host populations (Trevelline et al., 2019; West 
et al., 2019). The contribution of the resident microbiota to essen-
tial functions for the health of its host, and their high interdepend-
ence, have led to the emergence of the “holobiont” concept (Carthey 
et al., 2020), recognizing the host and its associated micro-organisms 
as one functional unit (Esser et al., 2019; Morar & Bohannan, 2019; 
Zilber-Rosenberg & Rosenberg, 2008). In this context, we suggest 
that optimal life stages for population translocations should be cho-
sen using a comprehensive approach, considering holobionts rather 
than hosts alone, to avoid disrupting key windows for the estab-
lishment of microbial communities. Our results are encouraging as 

they suggest that in situ conservation approaches such as transloca-
tions do not affect the structure of the microbiota or the survival 
of salamander larvae, but future research should further investigate 
the long-term effect of these management strategies on amphib-
ian microbiota, using various life stages and biotopes. Ultimately, 
shifting our current conservation practices towards management of 
the holobiont requires a better understanding of the dynamics of 
organization of animal microbiota but has the potential to increase 
conservation success of endangered hosts faced with the sixth mass 
extinction crisis (Carthey et al., 2020; Wake & Vredenburg, 2008).
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