Liquid chromatography; Mass spectrometry; Nucleic acids; PO/PS ratio; Phosphorothioate; Quality control; RNA, Double-Stranded; Clinical Trials as Topic; Guidelines as Topic; Humans; Quality Control; RNA, Double-Stranded/chemistry; RNA, Double-Stranded/standards; RNA, Double-Stranded/therapeutic use; Chemistry, Analytic; Drug Industry; Antisense oligonucleotides; Clinical trial; Mechanism of action; Pharmaceutical industry; Phosphorothioates; Quality testing; RNA therapeutics; Small interfering RNA; Therapeutic efficacy; Analytical Chemistry; Biochemistry; Organic Chemistry; General Medicine
Abstract :
[en] The number of RNA-based therapeutics has significantly grown in number on the market over the last 20 years. This number is expected to further increase in the coming years as many RNA therapeutics are being tested in late clinical trials stages. The first part of this paper considers the mechanism of action, the synthesis and the potential impurities resulting from synthesis as well as the strategies used to increase RNA-based therapeutics efficacy. In the second part of this review, the tests that are usually performed in the pharmaceutical industry for the quality testing of antisense oligonucleotides (ASOs), small-interfering RNAs (siRNAs) and messenger RNAs (mRNAs) will be described. In the last part, the remaining challenges and the ongoing developments to meet them are discussed.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Demelenne, Alice ; Université de Liège - ULiège > Faculté de Médecine > Doct. sc. bioméd. & pharma. (paysage)
Servais, Anne-Catherine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Crommen, Jacques ; Université de Liège - ULiège > Département de pharmacie
Fillet, Marianne ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Language :
English
Title :
Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Smith, C.I.E., Zain, R., Therapeutic oligonucleotides : state of the art. Annu. Rev. Pharmacol. Toxicol. 59 (2019), 605–630 doi:11146/annurev-pharmtox-010818-021050.
A. Yu, Y.H. Choi, M. Tu, RNA drugs and RNA targets for small molecules: principles, progress, and challenges, (2020) 862–898. doi:10.1124/pr.120.019554.
FDA, (2020). https://www.fda.gov/ (accessed January 23, 2021).
European Medicines Agency (EMA), (2021). https://www.ema.europa.eu/en (accessed January 23, 2021).
Crooke, S.T., Lemonidis, K.M., Neilson, L., Griffey, R., Lesnik, E.A., Monia, B.P., Kinetic characteristics of Escherichia coli RNase H1 : cleavage of various antisense oligonucleotide-RNA duplexes. Biochem. J. 312 (1995), 599–608, 10.1042/bj3120599.
Roberts, T.C., Langer, R., Wood, M.J.A., Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19 (2020), 673–694, 10.1038/s41573-020-0075-7.
Yin, W., Rogge, M., Targeting RNA: a transformative therapeutic strategy. Clin. Transl. Sci. 12 (2019), 98–112, 10.1111/cts.12624.
Catani, M., De Luca, C., Medeiros, J., Alcântara, G., Manfredini, N., Perrone, D., Marchesi, E., Weldon, R., Müller-Späth, T., Cavazzini, A., Morbidelli, M., Sponchioni, M., Oligonucleotides : current trends and innovative applications in the synthesis, characterization, and purification. Biotechnol. J. 15 (2020), 1–14, 10.1002/biot.201900226.
Glazier, D.A., Liao, J., Roberts, B.L., Li, X., Yang, K., Stevens, C.M., Tang, W., Chemical synthesis and biological application of modified oligonucleotides. Bioconjug. Chem. 31 (2020), 1213–1233, 10.1021/acs.bioconjchem.0c00060.
El Zahar, N.M., Magdy, N., El-Kosasy, A.M., Bartlett, M.G., Chromatographic approaches for the characterization and quality control of therapeutic oligonucleotide impurities. Biomed. Chromatogr., 32, 2018, e4088, 10.1002/bmc.4088.
Pardi, N., Hogan, M.J., Weissman, D., Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 65 (2020), 14–20, 10.1016/j.coi.2020.01.008.
Sahin, U., Karikó, K., Türeci, Ö., mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 13 (2014), 759–780, 10.1038/nrd4278.
Bennett, C.F., Swayze, E.E., RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50 (2010), 259–293, 10.1146/annurev.pharmtox.010909.105654.
Khvorova, A., Watts, J.K., The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35 (2017), 238–248, 10.1038/nbt.3765.
Hu, B., Zhong, L., Weng, Y., Peng, L., Huang, Y., Zhao, Y., Liang, X.J., Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther., 5, 2020, 10.1038/s41392-020-0207-x.
Healy, J.M., Lewis, S.D., Kurz, M., Boomer, R.M., Thompson, K.M., Wilson, C., Mccauley, T.G., Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21 (2004), 2234–2246, 10.1007/s11095-004-7676-4 https://doi.org/.
Karkare, M.S., Bhatnagar, D., Promising nucleic acid analogs and mimics : characteristic features and applications of PNA, LNA, and morpholino. Appl. Microbiol. Biotechnol. 71 (2006), 575–586, 10.1007/s00253-006-0434-2.
Lu, X., Zhang, K., PEGylation of therapeutic oligonucleotides: From linear to highly branched PEG architectures. Nano Res. 11 (2018), 5519–5534, 10.1007/s12274-018-2131-8.
Huang, Y., Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol. Ther. Nucleic Acids 6 (2017), 116–132, 10.1016/j.omtn.2016.12.003.
Dammes, N., Peer, D., Paving the road for RNA therapeutics. Trends Pharmacol. Sci. 41 (2020), 755–775, 10.1016/j.tips.2020.08.004.
Walsh, E.E., Frenck, R.W., Falsey, A.R., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Mulligan, M.J., Bailey, R., Swanson, K.A., Li, P., Koury, K., Kalina, W., Cooper, D., Fontes-Garfias, C., Shi, P.Y., Türeci, Ö., Tompkins, K.R., Lyke, K.E., Raabe, V., Dormitzer, P.R., Jansen, K.U., Şahin, U., Gruber, W.C., Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. New Engl. J. Med. 383 (2020), 2439–2450, 10.1056/NEJMoa2027906.
Charette, M., Gray, M.W., Pseudouridine in RNA: what, where, how, and why. Int. Union Biochem. Mol. Biol. Life 49 (2000), 341–351, 10.1080/152165400410182.
Pardi, N., Hogan, M.J., Naradikian, M.S., Parkhouse, K., Cain, D.W., Jones, L., Moody, M.A., Verkerke, H.P., Myles, A., Willis, E., Labranche, C.C., Montefiori, D.C., Lobby, J.L., Saunders, K.O., Liao, H.X., Korber, B.T., Sutherland, L.L., Scearce, R.M., Hraber, P.T., Tombácz, I., Muramatsu, H., Ni, H., Balikov, D.A., Li, C., Mui, B.L., Tam, Y.K., Krammer, F., Karikó, K., Polacino, P., Eisenlohr, L.C., Madden, T.D., Hope, M.J., Lewis, M.G., Lee, K.K., Hu, S.L., Hensley, S.E., Cancro, M.P., Haynes, B.F., Weissman, D., Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J. Exp. Med. 215 (2018), 1571–1588, 10.1084/jem.20171450.
Jackson, N.A.C., Kester, K.E., Casimiro, D., Gurunathan, S., DeRosa, F., The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines 5 (2020), 3–8, 10.1038/s41541-020-0159-8.
Sachs, A., The role of poly(A) in the translation and stability of mRNA. Curr. Opin. Cell Biol. 2 (1990), 1092–1098, 10.1016/0955-0674(90)90161-7.
Mikkola, S., Salomäki, S., Zhang, Z., Mäki, E., Lönnberg, H., Preparation and properties of mRNA 5-cap structure. Curr. Org. Chem. 9 (2005), 999–1022, 10.2174/1385272054368402.
Strzelecka, D., Smietanski, M., Sikorski, P.J., Warminski, M., Kowalska, J., Jemielity, J., Phosphodiester modifications in mRNA poly(A) tail prevent deadenylation without compromising protein expression. RNA 26 (2020), 1815–1837, 10.1261/RNA.077099.120.
Clinical trials, (2021). https://clinicaltrials.gov/ (accessed January 23, 2021).
Alnylam, (2021). www.alnylam.com/alnylam-rnai-pipeline/ (accessed January 23, 2021).
Arrowheadpharma, (2021). https://arrowheadpharma.com/pipeline (accessed January 23, 2021).
Modernatx, (2021). www.modernatx.com/pipeline (accessed January 23, 2021).
Biontech, (2021). https://biontech.de/science/pipeline (accessed January 23, 2021).
Dicerna, (2021). https://dicerna.com/pipeline (accessed January 23, 2021).
Curevac, (2021). www.curevac.com/our-pipeline (accessed January 23, 2021).
Lam, J.K.W., Chow, M.Y.T., Zhang, Y., Leung, S.W.S., siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids, 2015, e252, 10.1038/mtna.2015.23.
ICH Official web site: ICH, (2021). https://www.ich.org/ (accessed January 24, 2021).
FDA report: Guidance for industry: guidance for human somatic cell therapy and gene therapy, 1998. doi:10.1089/hum.1998.9.10-1513.
Capaldi, D., Ackley, K., Brooks, D., Carmody, J., Draper, K., Kambhampati, R., Kretschmer, M., Levin, D., McArdle, J., Noll, B., Raghavachari, R., Roymoulik, I., Sharma, B.P., Thürmer, R., Wincott, F., Quality aspects of oligonucleotide drug development: specifications for active pharmaceutical ingredients. Drug Inf. J. 46 (2012), 611–626, 10.1177/0092861512445311.
Capaldi, D., Teasdale, A., Henry, S., Akhtar, N., Gao-Sheridan, S., Kretschmer, M., Sharpe, N., Andrews, B., Burm, B., Impurities in oligonucleotide drug. Nucleic Acid Ther. 27 (2017), 1–14, 10.1089/nat.2017.0691.
Capaldi, D., Akhtar, N., Atherton, T., Benstead, D., Charaf, A., De Vijlder, T., Heatherington, C., Hoernschemeyer, J., Jiang, H., Rieder, U., Ring, F., Peter, R., Stolee, J.A., Wechselberger, R., Strategies for identity testing of therapeutic oligonucleotide drug substances and drug products. Nucleic Acid Ther., 00, 2020, 10.1089/nat.2020.0878.
Cohen, A.S., Vilenchik, M., Dudley, J.L., Gemborys, M.W., Bourque, A.J., High-performance liquid chromatography and capillary gel electrophoresis as applied to antisense DNA. J. Chromatogr. A 638 (1993), 293–301, 10.1016/0021-9673(93)83441-T.
Srivatsa, G.S., Batt, M., Schuette, J., Carlson, R.H., Fitchett, J., Lee, C., Cole, D.L., Quantitative capillary gel electrophoresis assay of phosphorothioate oligonucleotides in pharmaceutical formulations. J. Chromatogr. A 680 (1994), 469–477, 10.1016/0021-9673(94)85145-X.
Bourque, A.J., Cohen, A.S., Quantitative analysis of phosphorothioate oligonucleotides in biological fluids using fast anion-exchange chromatography. J. Chromatogr. B Biomed. Sci. Appl. 617 (1993), 43–49, 10.1016/0378-4347(93)80419-5.
Chen, B., Bartlett, M.G., Determination of therapeutic oligonucleotides using capillary gel electrophoresis. Biomed. Chromatogr. 26 (2012), 409–418, 10.1002/bmc.1696.
Freudemann, T., Von Brocke, A., Bayer, E., Von Brocke, A., Bayer, E., On-line coupling of capillary gel electrophoresis with electrospray mass spectrometry for oligonucleotide analysis. Anal. Chem. 73 (2001), 2587–2593, 10.1021/ac0012290.
Thayer, J.R., Barreto, V., Rao, S., Pohl, C., Control of oligonucleotide retention on a pH-stabilized strong anion exchange column. Anal. Biochem. 338 (2005), 39–47, 10.1016/j.ab.2004.11.013.
Biba, M., Jiang, E., Mao, B., Zewge, D., Foley, J.P., Welch, C.J., Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns. J. Chromatogr. A 1304 (2013), 69–77, 10.1016/j.chroma.2013.06.050.
Beverly, M.B., Applications of mass spectrometry to the study of siRNA. Mass Spectrom. Rev. 30 (2011), 979–998, 10.1002/mas.20260.
Studzińska, S., Review on investigations of antisense oligonucleotides with the use of mass spectrometry. Talanta 176 (2018), 329–343, 10.1016/j.talanta.2017.08.025.
Sutton, J.M., Kim, J., El Zahar, N.M., Bartlett, M.G., Bioanalysis and biotransformation of oligonucleotide therapeutics by liquid chromatography-mass spectrometry. Mass Spectrom. Rev., 2020, 1–25, 10.1002/mas.21641.
Sutton, J.M., Guimaraes, G.J., Annavarapu, V., van Dongen, W.D., Bartlett, M.G., Current state of oligonucleotide characterization using liquid chromatography-mass spectrometry: insight into critical issues. J. Am. Soc. Mass Spectrom. 31 (2020), 1775–1782, 10.1021/jasms.0c00179.
Santos, I.C., Brodbelt, J.S., Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010–2020). J. Sep. Sci. 44 (2021), 340–372, 10.1002/jssc.202000833.
Apffel, A., Chakel, J.A., Fischer, S., Lichtenwalter, K., Hancock, W.S., Analysis of oligonucleotides by HPLC-electrospray ionization mass spectrometry. Anal. Chem. 69 (1997), 1320–1325, 10.1021/ac960916h.
Gilar, M., Fountain, K.J., Budman, Y., Neue, U.D., Yardley, K.R., Rainville, P.D., Russell, R.J., Gebler, J.C., Ion-pair reversed-phase high-performance liquid chromatography analysis of oligonucleotides: retention prediction. J. Chromatogr. A 958 (2002), 167–182, 10.1016/S0021-9673(02)00306-0.
Mcginnis, A.C., Grubb, E.C., Bartlett, M.G., Systematic optimization of ion-pairing agents and hexafluoroisopropanol for enhanced electrospray ionization mass spectrometry of oligonucleotides. Rapid Commun. Mass Spectrom., 2013, 2655–2664, 10.1002/rcm.6733.
Elzahar, N.M., Magdy, N., El-Kosasy, A.M., Bartlett, M.G., Bartlett, M.G., Degradation product characterization of therapeutic oligonucleotides using liquid chromatography mass spectrometry. Anal. Bioanal. Chem. 410 (2018), 3375–3384, 10.1007/s00216-018-1032-8.
Studzińska, S., Buszewski, B., Analysis of microRNA and modified oligonucleotides with the use of ultra high performance liquid chromatography coupled with mass spectrometry. J. Chromatogr. A 1554 (2018), 71–80, 10.1016/j.chroma.2018.04.037.
Cheng, X., Gale, D.C., Udseth, H.R., Smith, R.D., Charge state reduction of oligonucleotide negative ions from electrospray ionization. Anal. Chem. 67 (1995), 586–593, 10.1021/ac00099a016.
Basiri, B., Van Hattum, H., Van Dongen, W.D., Murph, M.M., Bartlett, M.G., The role of fluorinated alcohols as mobile phase modifiers for LC-MS analysis of oligonucleotides. J. Am. Soc. Mass Spectrom., 2016, 190–199, 10.1007/s13361-016-1500-3.
Sutton, J.M., El Zahar, N.M., Bartlett, M.G., Oligonucleotide anion adduct formation using negative ion electrospray ion-mobility mass spectrometry. J. Am. Soc. Mass Spectrom., 2021, 10.1021/jasms.0c00380.
Kaczmarkiewicz, A., Nuckowski, Ł., Studzińska, S., Buszewski, B., Analysis of antisense oligonucleotides and their metabolites with the use of ion pair reversed-phase liquid chromatography coupled with mass spectrometry. Crit. Rev. Anal. Chem. 49 (2019), 256–270, 10.1080/10408347.2018.1517034.
Alpert, A.J., Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 499 (1990), 177–196, 10.1016/S0021-9673(00)96972-3.
Lobue, P.A., Jora, M., Addepalli, B., Limbach, P.A., Oligonucleotide analysis by hydrophilic interaction liquid chromatography-mass spectrometry in the absence of ion-pair reagents. J. Chromatogr. A 1595 (2019), 39–48, 10.1016/j.chroma.2019.02.016.
Demelenne, A., Gou, M.J., Nys, G., Parulski, C., Crommen, J., Servais, A.C., Fillet, M., Evaluation of hydrophilic interaction liquid chromatography, capillary zone electrophoresis and drift tube ion-mobility quadrupole time of flight mass spectrometry for the characterization of phosphodiester and phosphorothioate oligonucleotides. J. Chromatogr. A, 1614, 2020, 10.1016/j.chroma.2019.460716.
Alpert, A.J., Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal. Chem. 80 (2008), 62–76, 10.1021/ac070997p.
Jandera, P., Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal. Chim. Acta 692 (2011), 1–25, 10.1016/j.aca.2011.02.047.
Noll, B., Seiffert, S., Vornlocher, H.P., Roehl, I., Characterization of small interfering RNA by non-denaturing ion-pair reversed-phase liquid chromatography. J. Chromatogr. A 1218 (2011), 5609–5617, 10.1016/j.chroma.2011.06.057.
Largy, E., Mergny, J.L., Shape matters: size-exclusion HPLC for the study of nucleic acid structural polymorphism. Nucleic Acids Res., 42, 2014, e149, 10.1093/nar/gku751.
Chow, G., Morcos, P.A., Moulton, H.M., Aggregation and disaggregation of morpholino oligomers in solution. Methods Mol. Biol. 1565 (2017), 31–38, 10.1007/978-1-4939-6817-6.
Arakawa, T., Ejima, D., Li, T., Philo, J.S., The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. J. Pharm. Sci. 99 (2010), 1674–1692, 10.1002/jps.
Zimmermann, A., Greco, R., Walker, I., Horak, J., Cavazzini, A., Lämmerhofer, M., Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography. J. Chromatogr. A 1354 (2014), 43–55, 10.1016/j.chroma.2014.05.048.
Qin, L., Lynen, F., Xu, G., Wang, J., Sandra, P., Li, H., Li, Q., Comprehensive hydrophilic interaction and ion-pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides. J. Chromatogr. A 1255 (2012), 237–243, 10.1016/j.chroma.2011.11.062.
Roussis, S.G., Cedillo, I., Rentel, C., Two-dimensional liquid chromatography-mass spectrometry for the characterization of modified oligonucleotide impurities. Anal. Biochem. 556 (2018), 45–52, 10.1016/j.ab.2018.06.019.
Li, F., Su, X., Bäurer, S., Lämmerhofer, M., Multiple heart-cutting mixed-mode chromatography-reversed-phase 2D-liquid chromatography method for separation and mass spectrometric characterization of synthetic oligonucleotides. J. Chromatogr. A, 1625, 2020, 10.1016/j.chroma.2020.461338.
Willems, A., Deforce, D.L., Van Bocxlaer, J., Analysis of oligonucleotides using capillary zone electrophoresis and electrospray mass spectrometry. Methods in Molecular Biology, 2008, Humana Press, 401–414, 10.1007/978-1-59745-376-9_14.
D'Atri, V., Causon, T., Hernandez-Alba, O., Mutabazi, A., Veuthey, J.L., Cianferani, S., Guillarme, D., Adding a new separation dimension to MS and LC–MS: what is the utility of ion mobility spectrometry?. J. Sep. Sci. 41 (2018), 20–67, 10.1002/jssc.201700919.
Abi-Ghanem, J., Gabelica, V., Nucleic acid ion structures in the gas phase. Phys. Chem. Chem. Phys. 16 (2014), 21204–21218, 10.1039/c4cp02362e.
Porrini, M., Darre, L., Orozco, M., Compaction of duplex nucleic acids upon native electrospray mass spectrometry. ACS Cent. Sci. 3 (2017), 454–461, 10.1021/acscentsci.7b00084.
Arcella, A., Dreyer, J., Ippoliti, E., Ivani, I., Portella, G., Gabelica, V., Carloni, P., Orozco, M., Structure and dynamics of oligonucleotides in the gas phase. Angew. Chem. Int. Ed. 54 (2015), 467–471, 10.1002/anie.201406910.
Quinn, R., Basanta-sanchez, M., Rose, R.E., Fabris, D., Direct infusion analysis of nucleotide mixtures of very similar or identical elemental composition. J. Mass Spectrom. 48 (2013), 703–712, 10.1002/jms.3207.
Kenderdine, T., Nemati, R., Baker, A., Palmer, M., Ujma, J., Fitzgibbon, M., Deng, L., Royzen, M., Langridge, J., Fabris, D., High-resolution ion mobility spectrometry-mass spectrometry of isomeric/isobaric ribonucleotide variants. J. Mass Spectrom., 55, 2020, e4465, 10.1002/jms.4465.
May, J.C., Knochenmuss, R., Fjeldsted, J.C., McLean, J.A., Resolution of isomeric mixtures in ion mobility using a combined demultiplexing and peak deconvolution technique. Anal. Chem. 92 (2020), 9482–9492, 10.1021/acs.analchem.9b05718.
Vu, H., Hirschbein, B.L., Internucleotide phosphite sulfurization with tetraethylthiuram disulfide. phosphorothioate oligonucleotide synthesis via phosphoramidite chemistry. Tetrahedron Lett. 32 (1991), 3005–3008, 10.1016/0040-4039(91)80672-S.
Hirschbein, B.L., Fearon, K.L., 31P NMR spectroscopy in oligonucleotide research and development. Antisense Nucleic Acid Drug Dev. 7 (1997), 55–61, 10.1089/oli.1.1997.7.55.
Bergot, B.J., Egan, W., Separation of synthetic phosphorothioate oligodeoxynucleotides from their oxygenated (phosphodiester) defect species by strong-anion-exchange high-performance liquid chromatography. J. Chromatogr. A 599 (1992), 35–42, 10.1016/0021-9673(92)85456-4.
Cummins, P.M., Rochfort, K.D., O'Connor, F., Ion-exchange chromatography: basic principles and application. Protein Chromatography Methods and Protocols, 2017, 209–223, 10.1007/978-1-4939-6412-3.
Yang, X., Hodge, R.P., Luxon, B.A., Shope, R., Gorenstein, D.G., Separation of synthetic oligonucleotide dithioates from monothiophosphate impurities by anion-exchange chromatography on a Mono-Q column. Anal. Biochem. 306 (2002), 92–99, 10.1006/abio.2001.5694.
Close, E.D., Nwokeoji, A.O., Milton, D., Cook, K., Hindocha, D.M., Hook, E.C., Wood, H., Dickman, M.J., Nucleic acid separations using superficially porous silica particles. J. Chromatogr. A 1440 (2016), 135–144, 10.1016/j.chroma.2016.02.057.
Bianga, J., Perez, M., Mouvet, D., Cajot, C., De Raeve, P., Delobel, A., Development of an ICP-MS /MS approach for absolute quantification and determination of phosphodiester to phosphorothioate ratio in therapeutic oligonucleotides. J. Pharm. Biomed. Anal., 184, 2020, 113179, 10.1016/j.jpba.2020.113179.
Nikcevic, I., Wyrzykiewicz, T.K., Limbach, P.A., Detecting low-level synthesis impurities in modified phosphorothioate oligonucleotides using liquid chromatography – high resolution mass spectrometry. Int. J. Mass Spectrom. 304 (2012), 98–104, 10.1016/j.ijms.2010.06.001.
Smith, M., Beck, T., Quantitation of a low level coeluting impurity present in a modified oligonucleotide by both LC-MS and NMR. J. Pharm. Biomed. Anal. 118 (2016), 34–40, 10.1016/j.jpba.2015.10.019.
Krieg, A.M., Guga, P., Stec, W., P-chirality-dependent immune activation by phosphorothioate CpG oligodeoxynucleotides. Oligonucleotides 13 (2003), 491–499, 10.1089/154545703322860807.
Iwamoto, N., Butler, D.C.D., Svrzikapa, N., Mohapatra, S., Zlatev, I., Sah, D.W.Y., Standley, S.M., Lu, G., Apponi, L.H., Frank-kamenetsky, M., Zhang, J.J., Vargeese, C., Verdine, G.L., Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol. 35 (2017), 845–851, 10.1038/nbt.3948.
Østergaard, M.E., De Hoyos, C.L., Wan, W.B., Shen, W., Low, A., Berdeja, A., Vasquez, G., Murray, S., Migawa, M.T., Liang, X.H., Swayze, E.E., Crooke, S.T., Seth, P.P., Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Nucleic Acids Res. 48 (2020), 1691–1700, 10.1093/nar/gkaa031.
Sakamuri, S., Eltepu, L., Liu, D., Lam, S., Meade, B.R., Liu, B., Dello Iacono, G., Kabakibi, A., Luukkonen, L., Leedom, T., Foster, M., Bradshaw, C.W., Impact of phosphorothioate chirality on double-stranded siRNAs: a systematic evaluation of stereopure siRNA designs. ChemBioChem 21 (2020), 1304–1308, 10.1002/cbic.201900630.
Meena, Lemaitre, M.M., Stereocontrolled oligonucleotides for nucleic acid therapeutics: a perspective. Nucleic Acid Ther. 00 (2020), 1–6, 10.1089/nat.2020.0906.
Stec, W.J., Grajkowski, A., Koziolkiewicz, M., Uznanski, B., Novel route to oligo(deoxyribonucleoside phosphorothioates). stereocontrolled synthesis of P-chiral oligo(deoxyribonucleoside phosphorothioates). Nucleic Acid Ther. 19 (1991), 5883–5888, 10.1093/nar/19.21.5883.
Guo, M., Yu, D., Iyer, P., Agrawal, S., Solid-phase stereoselective synthesis of 2’-O-methyl oligoribonucleoside phosphorothioates using nucleoside bicyclic oxazaphospholidines. Bioorg. Med. Chem. Lett. 8 (1998), 2539–2544, 10.1016/s0960-894x(98)00450-8.
Gilar, M., Belenky, A., Cohen, A.S., Polymer solutions as a pseudostationary phase for capillary electrochromatographic separation of DNA diastereomers. Electrophoresis 21 (2000), 2999–3009, 10.1002/1522-2683(20000801)21:14<2999::aid-elps2999>3.0.co;2-1.
Thayer, J.R., Wu, Y., Hansen, E., Angelino, M.D., Rao, S., Separation of oligonucleotide phosphorothioate diastereoisomers by pellicular anion-exchange chromatography. J. Chromatogr. A 1218 (2011), 802–808, 10.1016/j.chroma.2010.12.051.
Enmark, M., Rova, M., Samuelsson, J., Örnskov, E., Schweikart, F., Fornstedt, T., Investigation of factors influencing the separation of diastereomers of phosphorothioated oligonucleotides. Anal. Bioanal. Chem. 411 (2019), 3383–3394, 10.1007/s00216-019-01813-2.
Karikó, K., Muramatsu, H., Ludwig, J., Weissman, D., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39 (2011), 1–10, 10.1093/nar/gkr695.
Zhong, Z., Cafferty, S.M., Combes, F., Huysmans, H., De Temmerman, J., Gitsels, A., Vanrompay, D., Catani, J.P., Sanders, N.N., mRNA therapeutics deliver a hopeful message. Nano Today 23 (2018), 16–39, 10.1016/j.nantod.2018.10.005.
Lukavsky, P.J., Puglisi, J.D., Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides. RNA 10 (2004), 889–893, 10.1261/rna.5264804.
Lehrach, H., Diamond, D., Wozney, J.M., Boedtker, H., RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16 (1977), 4743–4751, 10.1021/bi00640a033.
Swerdlow, H., Gesteland, R., Capillary gel electrophoresis for rapid, high resolution DNA sequencing. Nucleic Acids Res. 18 (1990), 1415–1419, 10.1093/nar/18.6.1415.
De Scheerder, L., Sparén, A., Nilsson, G.A., Norrby, P.O., Örnskov, E., Designing flexible low-viscous sieving media for capillary electrophoresis analysis of ribonucleic acids. J. Chromatogr. A 1562 (2018), 108–114, 10.1016/j.chroma.2018.05.048.
Lu, T., Klein, L.J., Ha, S., Rustandi, R.R., High-resolution capillary electrophoresis separation of large RNA under non-aqueous conditions. J. Chromatogr. A, 1618, 2020, 10.1016/j.chroma.2020.460875.
Shields, T.P., Mollova, E., Marie, L.S., Hansen, M.R., Pardi, A., High-performance liquid chromatography purification of homogenous-length RNA produced by trans cleavage with a hammerhead ribozyme. RNA 5 (1999), 1259–1267, 10.1017/S1355838299990945.
McKenna, S.A., Kim, I., Puglisi, E.V., Lindhout, D.A., Aitken, C.E., Marshall, R.A., Puglisi, J.D., Purification and characterization of transcribed RNAs using gel filtration chromatography. Nat. Protoc. 2 (2007), 3270–3277, 10.1038/nprot.2007.480.
Lee, J., Gan, H.T., Latiff, S.M.A., Chuah, C., Lee, W.Y., Yang, Y.S., Loo, B., Ng, S.K., Gagnon, P., Principles and applications of steric exclusion chromatography. J. Chromatogr. A 1270 (2012), 162–170, 10.1016/j.chroma.2012.10.062.
Levanova, A., Poranen, M.M., Application of steric exclusion chromatography on monoliths for separation and purification of RNA molecules. J. Chromatogr. A 1574 (2018), 50–59, 10.1016/j.chroma.2018.08.063.
Van der Mast, C.A., Hekstra, D., Voorma, H.O., Separation of translationally active mRNAs by reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 564 (1991), 115–125, 10.1016/0378-4347(91)80074-M.
Baiersdörfer, M., Boros, G., Muramatsu, H., Mahiny, A., Vlatkovic, I., Sahin, U., Karikó, K., A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15 (2019), 26–35, 10.1016/j.omtn.2019.02.018.
Beverly, M., Hagen, C., Slack, O., Poly A tail length analysis of in vitro transcribed mRNA by LC-MS. Anal. Bioanal. Chem. 410 (2018), 1667–1677, 10.1007/s00216-017-0840-6.
Rüger, J., Ioannou, S., Castanotto, D., Stein, C.A., Oligonucleotides to the (Gene) Rescue: FDA Approvals 2017–2019. Trends Pharmacol. Sci. 41 (2020), 27–41, 10.1016/j.tips.2019.10.009.
Campbell, J.D., Development of the CpG adjuvant 1018: A case study. Methods Mol. Biol. 1494 (2017), 15–27, 10.1007/978-1-4939-6445-1_2.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.