No document available.
Keywords :
Arabinose operon; Biological noise; Cell switching; Gene circuits; On-line flow cytometry; Phenotypic diversification; Recombinant Proteins; Recombinant Proteins/genetics; Recombinant Proteins/metabolism; Population Dynamics; Gene Expression; Escherichia coli/genetics; Escherichia coli/metabolism; Escherichia coli; Molecular Biology; Genetics
Abstract :
[en] Different expression vectors are available for the effective production of recombinant proteins by bacterial populations. However, the productivity of such systems is limited by the inherent noise of the gene circuits used for the synthesis of recombinant products. An extreme case of cell-to-cell heterogeneity that has been previously reported for the ara- and lac-based expression systems in E. coli is the all-or-none response. According to this mode of response, two subpopulations of cells are generated, i.e., a "low-" subpopulation exhibiting a shallow expression level and a "high-" subpopulation exhibiting a high-expression level. The "low-" subpopulation can be considered as a cluster of non-producing cells contributing to the loss of productivity. Here we describe the setup, design, and operation of a continuous culture where inducer addition is operated based on microbial population dynamics. The determination of population dynamics is done based on an automated flow cytometry (FC) procedure previously denoted as segregostat. We illustrate how this setup can be used to control the activation of an ara-based expression system and avoid phenotypic diversification leading to an all-or-none response. Upon the determination of the natural frequency of the gene circuit used as an expression system, our current protocol can be set up without the requirement of a feedback controller.
Scopus citations®
without self-citations
1