energy storage; groundwater; open shallow geothermal system; ATES; renewable energy; groundwater modelling; interactions; heat plumes; cold plumes
Abstract :
[en] Shallow open-loop geothermal systems function by creating heat and cold reserves in an aquifer, via doublets of pumping and reinjection wells. Three adjacent buildings in the center of Brussels have adopted this type of aquifer thermal energy storage (ATES) system. Two of them exploit the same aquifer consisting of Cenozoic sands, and started operation in 2014 and 2017, respectively. A previous hydrogeological model developed by Bulté et al. (2021) has shown how the thermal imbalance of one of the systems jeopardizes the thermal state of this upper aquifer.
Here, the interactions with a more recent third ATES system located in the deep aquifer of the Palaeozoic bedrock are studied and modelled. After being calibrated on groundwater flow conditions in both aquifers, a 3D hydrogeological model was used to simulate the cumulative effect of the three geothermal installations in the two exploited aquifers. The results of the simulations showed that although the hydraulic interactions between the two aquifers are very weak (as shown by the different observed potentiometric heads), heat exchanges occur between the two aquifers through the aquitard. Fortunately, these heat exchanges are not sufficient to have a significant impact on the efficiency of the individual geothermal systems. Additionally, this study shows clearly that adding a third system in the lower aquifer with a mean power of 286 kW for heating between October and March and an equivalent mean cooling power between April and September is efficient.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
De Paoli, Caroline ; Université de Liège - ULiège > Urban and Environmental Engineering
Dassargues A. Hydrogeology—Groundwater Science and Engineering Taylor & Francis CRC Press Boca Raton, FL, USA 2018 323 343
Dassargues A. Hydrogéologie Appliquée—Science et Ingéniérie des Eaux Souterraines Dunod Paris, France 2020 341 364 (In French)
Bulté M. Duren T. Bouhon O. Petitclerc E. Agniel M. Dassargues A. Numerical modeling of the interference of thermally unbalanced Aquifer Thermal Energy Storage systems in Brussels (Belgium) Energies 2021 14 6241 10.3390/en14196241
Yapparova A. Matthäi S. Driesner T. Realistic simulation of an aquifer thermal energy storage: Effects of injection temperature, well placement and groundwater flow Energy 2014 76 1011 1018 10.1016/j.energy.2014.09.018
Lee K.S. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation Hydrogeol. J. 2014 22 251 262 10.1007/s10040-013-1052-6
Bloemendal M. Hartog N. Analysis of the impact of storage conditions on the thermal recovery efficiency of low-temperature ATES systems Geothermics 2018 71 306 319 10.1016/j.geothermics.2017.10.009
Bloemendal M. Olsthoorn T. ATES systems in aquifers with high ambient groundwater flow velocity Geothermics 2018 75 81 92 10.1016/j.geothermics.2018.04.005
Gao L. Zhao J. An Q. Wang J. Liu X. A review on system performance studies of aquifer thermal energy storage Energy Procedia 2017 142 3537 3545 10.1016/j.egypro.2017.12.242
Fleuchaus P. Godschalk B. Stober I. Blum P. Worldwide application of aquifer thermal energy storage—A review Renew. Sustain. Energy Rev. 2018 94 861 876 10.1016/j.rser.2018.06.057
Hamada Y. Marutani K. Nakamura M. Nagasaka S. Ochifuji K. Fuchigami S. Yokoyama S. Study on underground thermal characteristics by using digital national land information, and its application for energy utilization Appl. Energy 2002 72 659 675 10.1016/S0306-2619(02)00055-7
Lo Russo S. Civita M.V. Open-loop groundwater heat pumps development for large buildings: A case study Geothermics 2009 38 335 345 10.1016/j.geothermics.2008.12.009
Andrews C. The impact of the use of heat pumps on ground-water temperatures Ground Water 1978 16 437 443 10.1111/j.1745-6584.1978.tb03259.x
Molina-Giraldo N. Bayer P. Blum P. Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions Int. J. Therm. Sci. 2011 50 1223 1231 10.1016/j.ijthermalsci.2011.02.004
Ma R. Zheng C. Effects of density and viscosity in modeling heat as a groundwater tracer Ground Water 2010 48 380 389 10.1111/j.1745-6584.2009.00660.x 20546316
Wildemeersch S. Jamin P. Orban P. Hermans T. Klepikova M. Nguyen F. Brouyère S. Dassargues A. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers J. Contam. Hydrol. 2014 169 90 99 10.1016/j.jconhyd.2014.08.001
Wagner V. Li T. Bayer P. Leven C. Dietrich P. Blum P. Thermal tracer testing in a sedimentary aquifer: Field experiment (Lauswiesen, Germany) and numerical simulation Hydrogeol. J. 2014 22 175 187 10.1007/s10040-013-1059-z
Hermans T. Wildemeersch S. Jamin P. Orban P. Brouyère S. Dassargues A. Nguyen F. Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT Geothermics 2015 53 14 26 10.1016/j.geothermics.2014.03.013
Casasso A. Sethi R. Modelling thermal recycling occurring in groundwater heat pumps (GWHPs) Renew. Energy 2015 77 86 93 10.1016/j.renene.2014.12.003
Lo Russo S. Taddia G. Cerino Abdin E. Verda V. Effects of different re-injection systems on the thermal affected zone (TAZ) modelling for open-loop groundwater heat pumps (GWHPs) Environ. Earth Sci. 2016 75 1 14 10.1007/s12665-015-4822-8
Klepikova M. Wildemeersch S. Jamin P. Orban P. Hermans T. Nguyen F. Brouyère S. Dassargues A. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling J. Hydrol. 2016 540 812 823 10.1016/j.jhydrol.2016.06.066
Hermans T. Nguyen F. Klepikova M. Dassargues A. Caers J. Uncertainty quantification of medium-term heat storage from short-term geophysical experiments Water Resour. Res. 2018 54 2931 2948 10.1002/2017WR022135
Wang G. Song X. Shi Y. Sun B. Zheng R. Li J. Pei Z. Song H. Numerical investigation on heat extraction performance of an open loop geothermal system in a single well Geothermics 2019 80 170 184 10.1016/j.geothermics.2019.03.005
Park D.K. Kaown D. Lee K.K. Development of a simulation-optimization model for sustainable operation of groundwater heat pump system Renew. Energy 2020 145 585 595 10.1016/j.renene.2019.06.039
Sommer W. Valstar J. Leusbrock I. Grotenhuis T. Rijnaarts H. Optimization and spatial pattern of large-scale aquifer thermal energy storage Appl. Energy 2015 137 322 337 10.1016/j.apenergy.2014.10.019
Bakr M. van Oostrom N. Sommer W. Efficiency of and interference among multiple Aquifer Thermal Energy Storage systems; A Dutch case study Renew. Energy 2013 60 53 62 10.1016/j.renene.2013.04.004
Vanhoudt D. Desmedt J. Van Bael J. Robeyn N. Hoes H. An aquifer thermal storage system in a Belgian hospital: Long-term experimental evaluation of energy and cost savings Energy Build. 2011 43 3657 3665 10.1016/j.enbuild.2011.09.040
Kranz S. Frick S. Efficient cooling energy supply with aquifer thermal energy storages Appl. Energy 2013 109 321 327 10.1016/j.apenergy.2012.12.002
Bloemendal M. Olsthoorn T. Boons F. How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage Energy Policy 2014 66 104 114 10.1016/j.enpol.2013.11.034
Fleuchaus P. Schüppler S. Godschalk B. Bakema G. Blum P. Performance analysis of Aquifer Thermal Energy Storage (ATES) Renew. Energy 2020 146 1536 1548 10.1016/j.renene.2019.07.030
Niknam P.H. Talluri L. Fiaschi D. Manfrida G. Sensitivity analysis and dynamic modelling of the reinjection process in a binary cycle geothermal power plant of Larderello area Energy 2021 214 118869 10.1016/j.energy.2020.118869
Leontidis V. Niknam P.H. Durgut I. Talluri L. Manfrida G. Fiaschi D. Akin S. Gainville M. Modelling reinjection of two-phase non-condensable gases and water in geothermal wells Appl. Therm. Eng. 2023 223 120018 10.1016/j.applthermaleng.2023.120018
Devleeschouwer X. Goffin C. Vandaele J. Meyvis B. Modélisation Stratigraphique en 2D et 3D du Sous-Sol de la Région de Bruxelles-Capitale Final report of the project BRUSTRATI3D Version 1.0. Royal Institute of Belgium for Natural Sciences Institute (RIBNS), Belgian Geological Survey Brussels, Belgium 2018 Available online: https://document.environnement.brussels/opac_css/index.php?lvl=notice_display&id=10964 (accessed on 18 October 2022) (In French)
IBGE—Institut Bruxellois Pour la Gestion de l’Environnement Atlas: Hydrogéologie Brussels Environment Brussels, Belgium 2020 Available online: https://geodata.environnement.brussels/client/view/82645188-dd20-430c-b1d1-df829c94dc1d (accessed on 18 October 2022) (In French)
AGT, Adviesbureau inzake Grondwatertechnieken Project: KWO Gare Maritime Brussel. Nota Testen KWO-bronnen: Stand van Zaken Report 2018 10 30-MPOS-AGT1915-Nota Adviesbureau inzake Grondwatertechnieken Kontich, Belgium 2018 Volume 15 43
Pollack H.N. Hurter S.J. Johnson J.R. Heat flow from the earth’s interior: Analysis of the global data set Rev. Geophys. 1993 31 267 280 10.1029/93RG01249
Doherty J. PEST–Model-Independent Parameter Estimation–User Manual 5th Watermark Numerical Computing EPA Washington, DC, USA 2005
Doherty J. Ground water model calibration using pilot points and regularization Ground Water 2003 41 170 177 10.1111/j.1745-6584.2003.tb02580.x
De Paoli C. Modélisation de L’effet Cumulé de Plusieurs Systèmes Géothermiques Ouverts Utilisant les Aquifères Peu Profonds en Zone Urbaine Master’s Thesis ULiège Liège, Belgium 2022 Available online: http://hdl.handle.net/2268.2/14560 (accessed on 30 November 2022) (In French)