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Featured Application: This work evaluates by numerical simulations the respective influences of
three ATES systems located in two different aquifers in the center of Brussels. The model is built
using Feflow©, and groundwater flow and heat transport are simulated based on all available
data. The results are useful to understand how one of the systems being thermally unbalanced is
influencing (i.e., decreasing in the mid- and long-term) the efficiency of the three ATES systems,
even if one of them is located in a deeper aquifer.

Abstract: Shallow open-loop geothermal systems function by creating heat and cold reserves in an
aquifer, via doublets of pumping and reinjection wells. Three adjacent buildings in the center of
Brussels have adopted this type of aquifer thermal energy storage (ATES) system. Two of them
exploit the same aquifer consisting of Cenozoic sands, and started operation in 2014 and 2017,
respectively. A previous hydrogeological model developed by Bulté et al. (2021) has shown how
the thermal imbalance of one of the systems jeopardizes the thermal state of this upper aquifer.
Here, the interactions with a more recent third ATES system located in the deep aquifer of the
Palaeozoic bedrock are studied and modelled. After being calibrated on groundwater flow conditions
in both aquifers, a 3D hydrogeological model was used to simulate the cumulative effect of the
three geothermal installations in the two exploited aquifers. The results of the simulations showed
that although the hydraulic interactions between the two aquifers are very weak (as shown by the
different observed potentiometric heads), heat exchanges occur between the two aquifers through
the aquitard. Fortunately, these heat exchanges are not sufficient to have a significant impact on the
efficiency of the individual geothermal systems. Additionally, this study shows clearly that adding a
third system in the lower aquifer with a mean power of 286 kW for heating between October and
March and an equivalent mean cooling power between April and September is efficient.

Keywords: energy storage; renewable energy; open geothermal system; groundwater; numerical
modelling; ATES; interactions

1. Introduction

The importance of renewable energy is driving a large growth in interest in geothermal
systems and especially in shallow systems coupled to heat pumps. A system of groundwa-
ter pumping and reinjection performed by doublets of wells in shallow aquifers is known
as Aquifer Thermal Energy Storage (ATES). In summer, groundwater is pumped into a
(cold) well for cooling, and the heat is injected back with water into the aquifer at a higher
temperature using a (warm) well. In winter, the system provides heat to the building from
the pumped groundwater, and injection occurs at a lower temperature [1–3]. Both the
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efficiency and impact of ATES systems must be studied through the quantification of heat
transfer in the saturated underground zone. Site-specific values for hydrogeological and
heat transport properties/parameters are needed to design heat storage systems in aquifers.
The seasonal heat storage considered in the shallow aquifers may be optimal or limited
by the underground hydrodynamic conditions. If advection is driven by the hydraulic
gradient and the hydraulic conductivity is high, heat and cold plumes are transferred
rapidly far away from the site [4–7] so that heat/cold cannot be stored efficiently for the
next season for the concerned buildings. Reliable predictions are most often based on
process-based numerical simulations of groundwater flow and heat transport. A yearly
annual thermal balance between cold and heat demands could be required in cases of
limited heat advection.

The objective of this paper is to examine the cumulative effect of three adjacent open
geothermal systems. A first model including a single aquifer, exploited by two of the three
ATES systems, was developed previously by Bulté et al. [3], who studied the possible
interference between these two systems. Here we add a deep aquifer separated from the
upper aquifer by an aquitard (i.e., a low hydraulic conductivity layer) that is exploited by a
newly added ATES system requiring a power of about 950 kW for both the cold and the
warm seasons. The combined effect of the three installations is assessed with the wells of
the new system established in the deeper aquifer in the fractured Paleozoic bedrock of the
Brabant Massif. Heat exchanges are likely to take place through the intermediate aquitard
formed by the weathered top of the bedrock, the overlying low permeability Cretaceous
base deposits, and a Cenozoic clayey layer.

Here, we will demonstrate that even though one unbalanced ATES system partly
jeopardizes the thermal state of the upper aquifer [3], an adjacent but deeper ATES system
can operate without too many negative interactions limiting either efficiency or durability.
The numerical simulation of the 3D groundwater flow and heat transport conditions
considering the upper and deeper aquifers separated by the aquitard provide an excellent
tool for analysis and decision support. This model will be particularly useful for the future
management of the three ATES systems.

2. Materials and Methods
2.1. Context

When considering reductions in CO2 emissions together with optimal cost constraints,
ATES systems can be an attractive solution [8,9], especially for new or renovated buildings.
The injected water temperatures induce cold and hot zones compared with the preexisting
natural temperature in the aquifer. However, the long-term effects of thermal storage in the
subsurface are more difficult to assess [10,11]. In very simplified and theoretical situations,
the cold and hot plumes can be calculated using analytical solutions [12,13]. The complexity
of actual heterogeneous hydrogeological conditions combined with the locations of the
wells makes the use of coupled groundwater flow and heat transport numerical models
essential [3,14–23].

Thermal interferences can be observed within one single or between neighboring systems.
Depending on the site, this can have a negative or a positive impact on the performance of each
system [24,25]. The negative interferences should, therefore, be avoided by adopting adequate
well-to-well distances, adapting pumping/injection rates [3,4,26], and managing the energy
demand toward balanced or slightly unbalanced thermal needs. Nowadays, in European
countries, cooling demand may more often exceed the heating demand [27] due to climatic
changes but also due to inadequate characteristics of the building or inefficient management
of the heating and cooling systems. If this thermal imbalance is observed each year with
pumping and injection in a low gradient and low hydraulic conductivity aquifer, the low
advection will not evacuate the hot plume sufficiently from one year to another [3]. In such
conditions, the cooling efficiency of the system decreases with time. In urbanized areas,
a challenge consists in optimizing the systems without inducing negative interferences
between them [24,25]. Other challenges concern (among others) (a) the nearly systematic
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oversizing of the ATES systems due mainly to future energy demand uncertainties [28], (b) the
lack of monitoring data around existing ATES systems [8,29], and (c) the timing of demand for
optimum building comfort conditions not corresponding to the best time for using the aquifer
heat or cold storage [28,29]. Examples of geothermal reinjection technologies and modelling
approaches can be found in Niknam et al. [30] and Leontidis et al. [31].

2.2. Study Case
2.2.1. Problem Statement

Three ATES systems located in two different aquifers in the center of Brussels are
operated for heating and cooling three different recent or recently renovated buildings
located in an urban reallocation zone of Brussels, named ‘development zone’ in Figure 1.
The first one was started in March 2014 (Building 1), the second in August 2017 (Building 2),
and the third (located in the deeper aquifer) in April 2020 (Building 3). The objective is to
assess the potential thermal interferences between the three systems, using a groundwater
and heat transport numerical model with the existing data. The same approach was
previously adopted by Bulté et al. [3], who studied the possible interference between the
two first systems. The two first systems were designed with eight wells (4 ‘cold wells’ and 4
‘warm wells’) each. The third system required ten wells (5 ‘cold wells’ and 5 ‘warm wells’)
drilled deeper and screened only in the fractured Paleozoic bedrock.
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overlying aquitard layer between this deep aquifer and the shallow aquifer. 

Figure 1. Location map of the study case in Brussels (Belgium). Locations of the model, development
zone, and the three studied buildings and their ‘cold’ and ‘warm wells’ of the ATES systems.

For each system, pumping in the ‘warm wells’ provides heat to the building in winter.
Note that heat is being stored during the summer around these wells by injection of warm
water from the cooling of the building. In summer, the ‘cold wells’ are used to pump
groundwater at the local aquifer temperature to cool the building. Cold is stored in the
aquifer around these wells during winter by injection of cold water from the heating of
the building. The numerical model developed previously by Bulté et al. [3] (using the
FEFLOW® software) was modified to include explicitly the Paleozoic bedrock and the
overlying aquitard layer between this deep aquifer and the shallow aquifer.
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2.2.2. Hydrogeology Context

The geological context has already been described in a previous paper [3] and inter-
preted by Devleeschouwer et al. [32]. From top to bottom, it consists of Cenozoic loose
sediments overlying Mesozoic Cretaceous marl and chalk, and at depth, there is Paleozoic
bedrock consisting of fractured phyllites and quartzites. To summarize, a ‘shallow aquifer’
can be considered to consist of a succession of sand and clayey deposits. This aquifer
system overlies an Upper Paleocene clay layer located at a depth of 74 m and of about
10 m thickness [33]. This clay layer lies directly on the Cretaceous layers reduced to 9 m of
thickness with marl (above) and chalk (below). Under these Cretaceous formations, the
Paleozoic fractured bedrock is considered the ‘deep aquifer’ system.

A simplified map showing the model boundaries (see Section 2.3.2, the available
piezometers, and the three ATES systems is shown in Figure 2. Two ATES systems (Building
1 and Building 2) (Figure 1) are exploiting the shallow aquifer system with the sandy
portions acting as aquifers and hosting the well screens. The third ATES system has
wells screened in the deep aquifer made of fractured phyllites and quartzites. The low
permeability layers between these two aquifers (i.e., the clay layer of the Upper Paleocene
and the Cretaceous marls) separate the shallow aquifer system from this deep aquifer.
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aquifer system (left) and in the deep Paleozoic bedrock aquifer (right).

The potentiometric behaviors in these two aquifer systems are different, as shown on
the regional potentiometric maps (Figure 2) [33]. Pumping tests performed in the upper
aquifer system have shown no measurable influence on the Paleozoic bedrock aquifer
system [3].
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2.3. Methods
2.3.1. Groundwater Flow and Heat Transport Equations

The heat transport equation in a saturated porous medium can be written as [1,2]:

∂ρbcbT
∂t

= −∇ · [ρwcwqT − λb∇T] + QT (1)

where ∇T is the temperature gradient (◦K/m), the main variable is the temperature
T (◦K) and the main properties or parameters influencing this transport are the bulk
thermal conductivity λb (W/(m◦K)) and heat capacity cb (J/(kg◦K)) of the porous medium.
The other properties are linked to groundwater with the density ρw (kg/m3) and heat
capacity cw (J/(kg◦K)). The groundwater flux vector q (m/s) is obtained from Darcy’s law.
External heat or sink sources are taken into account through a positive or negative value of
QT (W/m3), respectively.

The groundwater flow is solved by taking into account the pumping and reinjection
influences using the following transient equation in saturated conditions [1,2]:

∇ · ρw(K · ∇h) + ρwq′ = ρwSs
∂h
∂t

(2)

where the main variable is the potentiometric h (m),∇h is the piezometric gradient vector (-),
and the main properties or parameters influencing this groundwater flow are the hydraulic con-
ductivity tensor K (m/s), and the specific storage coefficient Ss (m−1). Pumping and reinjection
are taken into account through the negative and positive values of q′ (s−1), respectively.

Feflow® allows solving the groundwater flow problem in saturated or variably satu-
rated conditions, coupled with heat transport with temperature-dependent groundwater
density and viscosity. This software allows very flexible meshes of finite elements.

To link the groundwater pumping and reinjection to the thermal energy needs, we use
the following expression of the power P (in W) [1,2]:

P =
Q∆Tρwcw(
1− 1

COP

) (3)

where the coefficient of performance COP (-) of the heat pump can be expressed as the ratio
between the geothermally produced and the total required work. This equation shows that
this thermal energy is indeed directly proportional to the water flow rate Q (m3/s) and the
temperature difference ∆T (◦K).

2.3.2. Conceptualization

A total of 20 layers were discretized in the 3D model. From the top, ten layers represent
the shallow confined Cenozoic aquifer system: the first 5 layers correspond to the top part
of the upper aquifer, layers 6 and 7 are used for a clayey part, and layers 8–10 for the
lower aquifer sandy part of these Cenozoic sediments. Three layers are used to represent
the aquitard consisting of the clay layer at the bottom of the Cenozoic sediments, the
Cretaceous marls, and the Cretaceous chalks of low hydraulic conductivity. Then, seven
layers represent the fractured Paleozoic bedrock until a depth of 150 m: five layers in the
upper fractured zone, and two layers in the less fractured and less permeable zone. The
bottom of the model is arbitrarily set at an altitude of −150 m (i.e., a depth of about 170 m)
where relatively low permeability is observed (by pumping tests) and because the screens
of the deep ATES system (Building 3) are located at an altitude between−67 m and−138 m
(Figure 3). The groundwater flow is simulated in 3D including vertical and horizontal flow
components (cfr Section 3.1). Feflow© allows to simulate the effect of temperature changes
on the groundwater density and viscosity. However, constant hydraulic conductivity values
have been adopted as the variation can be neglected for limited changes in temperature.
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the location of Building 3 (deep ATES system).

The boundaries and boundary conditions (BCs) were chosen according to regional
hydrogeological data [33]. The top of the model corresponds to a no-flow BC, which is
induced by the low permeability of the overlying confining layers and the largely urbanized
land surface. As mentioned previously, the bottom boundary is set at a depth of 150 m
with a no-flow BC as at this depth, the bedrock is less permeable [34] and the vertical
component of the flow can be neglected. The lateral boundaries were chosen at a ‘large
enough’ distance compared with the radius of influence as interpreted from local pumping
tests. On the SE and NW lateral boundaries (Figure 4), potentiometric heads are prescribed
along head contour lines in the shallow aquifer and based on interpolated heads from the
potentiometric map in the bedrock aquifer [33]. No flux BCs were chosen on the NE and SW
lateral boundaries (Figure 4) as they are globally parallel to the general groundwater flow
directions, as well in the shallow aquifer and also in the deep aquifer. All the ATES pumping
and injection wells and other water production wells are represented by prescribed fluxes
(i.e., depth-averaged distributed onto different layers if different layers are screened in the
borehole) on the corresponding nodes of the finite element mesh.
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Figure 4. Lateral boundaries for solving the groundwater flow. Lateral BCs for heat transport are
everywhere prescribed to the natural initial temperature of 12.4 ◦C. Blue and green dots are pumping
wells in the shallow and deep aquifers respectively, and the blue arrow shows the direction of the
regional groundwater flow.

In the development zone (in yellow in Figure 4), the size of the finite element can be
very small, from a few cm near the wells to a few tens of meters near the boundaries of this
area of interest. In total, the 3D model consists of 1,248,420 finite elements with 20 layers of
62,421 elements. Specifically, in the development zone (area of interest), the finite element
mesh refinement leads to a total number of finite elements of 434,520.

For the heat transport BCs, a temperature of 12.4 ◦C was chosen along the lateral
boundaries. This temperature is the natural background temperature. A zero heat flux is
assumed on the top as on the bottom of the model. This means that the air temperature
influence and the mean deep geothermal energy flux are neglected [3,35].

As a first step, a steady-state groundwater flow was calculated from the initial po-
tentiometric conditions. Then, the calculated steady-state potentiometric map was used
for starting the transient groundwater flow. For heat transport, the natural background
temperature was chosen as the initial temperature in the whole model.

3. Results
3.1. Groundwater Flow Simulations

First, the model was calibrated for groundwater flow in steady state conditions on
the observed potentiometric situation of 1 March 2013. Parameter values were adjusted
manually in order to obtain calculated heads as close as possible to observed potentiometric
heads in both aquifers. Then, an automatic calibration using PEST [36] and associated
with 30 pilot points [37] was performed. This procedure allowed us to obtain a detailed
spatial distribution of the optimized hydraulic conductivity values in the model (Figure 5).
Essentially, the hydraulic conductivity values of the aquifers were optimized using this
procedure. For the low permeability zone forming the aquitard, horizontal hydraulic
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conductivity values of 1 × 10−7 m/s and 1 × 10−8 m/s were chosen for the Cretaceous
base deposits and for the Cenozoic clayey layer, respectively, and a ratio Kh/Kv = 10 was
adopted between the horizontal and vertical hydraulic conductivities. This calibration
generated a RMSE (Root Mean Square Error) of 1.02 × 10−6 m. The standard deviation is
1.08 × 10−6 m and residuals are of the order of 10−7 to 10−6 m. This calibration appears to
be ideal; however, it should be noted that if we had more measured data (i.e., additional
potentiometric data in the shallow as in the deep aquifers) it could be considered as much
more robust. Simulated potentiometric maps for the situation on 1 March 2013 (before
starting the Building 1 ATES system) are given in Figure 6.
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Then the steady state situation is used as the initial potentiometric map for a transient
state calibration that consists of fitting the values of the storage coefficient to reproduce
the time variability of the potentiometric heads as it was observed in previous pumping
tests in the shallow and bedrock aquifers [3,38]. The detailed results of this calibration,
as described by De Paoli [38], highlight the major fact that the pumping by Building 3 in
the lower aquifer has only very limited effect (maximum 5 to 20 cm drawdown) on the
potentiometric (observed and simulated) map in the shallow aquifer (i.e., where Buildings
1 and 2 have their ATES systems).

3.2. Heat Transport Simulations

In this section, the main results of the heat transport simulations are summarized
from the work of De Paoli [38]. Different scenarios were previously discussed involving
the ATES systems in Buildings 1 and 2, and their respective interactions [3]. Indeed,
the power extracted for each system is approximated based on the measured abstraction
rates and prescribing a ∆T of 6 ◦K between the pumping and reinjection temperatures [3]
(Table 1). In reality, these last values are not well known as the heat pump input and output
water temperatures are influenced by the temperature in the building basements and by
actual frequent switches between pumping and injection as imposed by the temperature
optimization in each building. Over years, a clear imbalance is observed seasonally in
the demand for Building 1. In contrast, the power demand for Building 2 seems balanced
(Table 1) [3]. Next, the ATES in Building 3 tapping the deep aquifer is added. Indeed, the
mean power can be multiplied by the duration of each period (6 months) to find the total
heating or cooling energy consumed by each building. For example, the ATES of Building 3
uses about 1250 MWh during one season. The time steps of the heat transport simulations
can vary from about 1 s until 15 days. Very short time steps are automatically chosen by
the software Feflow© when required for numerical stability and convergence needs.

Table 1. Mean power extraction by the different ATES systems in Buildings 1, 2 and 3 and the
associated assumed ∆T.

Power (kW)

∆T (◦C) Number of DoubletsHeating
(1 October to 31 March)

Cooling
(1 April to 30 September)

Building 1 44 86 6 4
Building 2 82 79 6 4
Building 3 286 285 Tinj cst (7 and 18) 5

3.2.1. Scenario Descriptions

The reference scenario (scenario 1) reproduces as far as possible the actual situation as
known from the different available data for the three ATES systems. The ATES in Building
1 started operation on 1 March 2014, the ATES in Building 2 started on 1 August 2017, and
finally, the ATES in Building 3 started on 1 April 2020.

The operational characteristics of this last ATES are assumed as foreseen in the first
feasibility study [34], leading to a mean power that is unbalanced between the heating and
cooling seasons (Table 1). Here, however, the injection temperatures are assumed constant
at 7 ◦C and 18 ◦C for the heating and cooling operations, respectively [34]. Each doublet is
assumed to contribute equally (1/5) to the total needed flow rate.

Other different scenarios can be considered for the heat transport simulations.
A second scenario is considered with a 50% increase in the cooling needs in Building
3. The third scenario corresponds to a constant ∆T equal to 6 ◦C for the ATES in Building 3.
Scenarios 4 and 5 consider increased values of thermal conductivity (up to 3 W/m ◦K) and
hydraulic conductivity (from 1 × 10−7 to 4 × 10−7 m/s), respectively, in the main aquitard
between the shallow and the deep aquifers. However, the results for those last scenarios
will not be commented on here as no significant changes in the simulated heat plumes and
heat interactions were simulated.
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3.2.2. Scenario Simulation Results

Ongoing and future conditions for the three ATES systems are calculated from 1
January 2014 until 31 March 2040, with no evolution in time of the power used for heating
or cooling. For scenario 1 (reference scenario), the temperature increases year after year in
the warm (WW) and in the cold wells (CW) of Buildings 1 and 2 (Figure 7). As commented
by Bulté et al. [3]: ‘a step increase was simulated in the hot wells at each spring period corresponding
to the start of each building cooling period and thus to injection of hot water in the hot wells’. The
simulated temperature increases systematically during the whole summer period in the
hot wells. This is also the case in the cold pumping wells, and after 2016, the coldest spring
temperatures continued to shift higher and thus continued to rise during the summer. As
indicated previously [3], the Building 1 imbalance (i.e., requiring less energy for heating
than cooling), is causing this trend for both Buildings 1 and 2. A step temperature decrease is
also simulated in the cold injection wells at the beginning of the winter, and the temperature
decreased during the whole period. Then, the temperature also decreases slightly near the
hot wells but never reaches back to the initial natural temperature. In the long term, the
coldest simulated temperatures that can be found at the beginning of the summer period in
the hot wells continue to increase each year from 12.4 and reach 21 ◦C in 2039.
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For Building 3, starting from the initial 12.4 ◦C in the deep aquifer, the simulated
evolution of the mean temperature in the hot and cold wells does not show any trend
(Figure 8). This results from the well-balanced power needs for heating and cooling
combined with the limited influence of the shallow aquifer changes on the deep aquifer
conditions. This is indeed very positive for the current and future efficiency of the ATES.
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Simulated heat and cold plumes in the shallow aquifer show the negative thermal
interferences between the heat plume and the cold wells of the Building 1 and 2 systems
(Figure 9) and the progressive temperature increase in the cold wells. Consequently, in this
aquifer, the cold storage becomes less efficient year after year. In the deep aquifer, heat
plumes are logically seen around the hot wells at the end of the summer. Slight heat plumes
are also simulated in this aquifer and are located just below the hot wells of Buildings 1
and 2 in the upper aquifer. This shows that the hot plumes in the shallow aquifer induce
only a limited influence on the deep aquifer.

The heat and cold plumes are simulated for more than 20 years for operation with
the power use maintained at current levels (Figure 10). On 1 October 2039, it appears that
the large heat plume generated in the upper aquifer (Figure 10, left) does not impact the
cold wells in the deep aquifer (Figure 10, right). From the reverse perspective, the hot and
cold plumes generated in the deep aquifer by the ATES system of Building 3 do not have a
significant effect on the shallow aquifer and hot and cold wells of Buildings 1 and 2.
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However, as expected, in the shallow aquifer, the cold wells of Building 1 and to a
lesser extent also those of Building 2, are affected by the large heat plume from the hot
wells of Building 1.
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For the second scenario involving a 50% increase in the cooling needs in Building 3,
the simulated evolution of the mean temperature at the hot and cold wells (Figure 11)
can be compared with those of the reference scenario. Logically, we observe that the
simulated temperature variation in the hot wells decreases each year so that in 2039, this
variation is less than 1 ◦C between 1 April and 1 October. In contrast, in the cold wells, a
higher temperature variation is calculated each year, adding to a general trend towards
higher temperatures induced by the thermal imbalance. In 2039, the temperature varies
between 7.6 and 13.1 ◦C, resulting in a temperature higher than the natural background
of 12.4 ◦C at the end of the summer period. Indeed, the efficiency of the cooling should
be slightly decreased accordingly, but this temperature increase is remarkably slow and
weak, showing a general high thermal inertia of the deep aquifer in relation to a highly
imbalanced ATES system. However, a constant injection temperature may also contribute
to this slow increase.
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the deep aquifer) for Building 3 for the second scenario involving a cooling power of 427 kW and a
heating power of 286 kW, compared with the first scenario.

Scenario 3 with a constant ∆T equal to 6 ◦C for the ATES in Building 3, induces a slight
temperature increase in the long term (i.e., after more than 17 years) in the wells of the
Building 1 ATES system and also a slight temperature decrease in those of the Building 2
ATES system. This influence is, however, very weak. Conversely, scenario 3 induces a clear
change in the temperature variations observed in the hot and cold wells of Building 3, with
lower temperatures and lower variations in the hot wells and higher temperatures and
lower variations in the cold wells (Figure 12). Yearly, the mean temperature is stabilized, as
for the reference scenario, but globally, the ATES system is slightly less efficient. Therefore,
an operational scheme giving priority to maintaining a constant ∆T is not specifically
recommended.
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4. Discussion and Conclusions

As shown previously [3], for Building 1, a large thermal imbalance providing more
hot water than cold water to the shallow aquifer led to negative interferences between the
heat plume in the aquifer and the cold wells. For this building, urgent corrections must
be implemented in the energy operational strategy (e.g., increased use of heat during the
winter period, increased night ventilation, and increased window solar protection) [3]. In
the shallow aquifer, the general increase in temperatures induced by this imbalance affects
the efficiency of the ATES system of Building 2. Year after year, the growing heat plumes
are not sufficiently dispersed or diluted by the natural groundwater flow in the aquifer.

Following the feasibility study [34], the third ATES system located in the deep aquifer
has well-balanced annual heat and cold power. Consequently, the simulated evolution of
the mean temperature at the hot and cold wells does not show any trend. Simulated heat
and cold plumes are seen around the hot and cold wells, respectively, at the end of the
cooling and heating seasons, as is logically expected.

Interactions between the systems of Buildings 1 and 2 in the shallow aquifer and the
system of Building 3 in the deep aquifer are limited. However, in the mid- and long-term,
heat and cold exchanges can be seen through the simulated heat and cold plumes that are
induced by the ATES systems located in the other aquifer. Those simulated interactions
remain very limited and have no important consequences on the efficiencies of the systems.

The ATES system of Building 3 seems very robust and stable. Even if this system
evolves towards a strongly imbalanced scheme with a cooling power that becomes double
the heating power (scenario 2), the efficiency of the cooling would only be slightly decreased
after 20 years, with a temperature in the deep aquifer (13.1 ◦C) higher than the natural
background (12.4 ◦C). Maintaining a constant ∆T between the warm and cold wells does
not significantly change the impact or the efficiency.

More generally, the seasonal heat storage in these two aquifers separated by an
aquitard composed of the weathered top of the bedrock, the overlying low permeability
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Cretaceous base deposits, and a Cenozoic clayey layer is a success story. The only weak
point is the effect of the recurrent imbalance of the cooling and heating needs in Building 1.
This induces a clear impact on the upper aquifer temperature, and consequently, on the mid-and
long-term efficiencies for both ATES systems located in this aquifer (Buildings 1 and 2).

However, as usual, the reliability of such models is closely linked to the availability of
measured potentiometric heads, groundwater temperatures, and detailed pumping and
injection data. In this particular case, and specifically viewing the simulated trend in the
upper aquifer, the acquisition of such measured data is crucial to improve the robustness
of the model results (i.e., with more detailed and long calibration periods). Real estate
developers, designers, and builders should give more attention to these needs in feasibility
studies as well as in their ‘after sales services’.
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