Differential Kendrick's Plots as an Innovative Tool for Lipidomics in Complex Samples: Comparison of Liquid Chromatography and Infusion-Based Methods to Sample Differential Study.
Lipids; Lipidomics; Biological samples; Complex samples; Direct infusions; Kendrick plots; Liquid chromatography - mass spectrometries; Non-targeted; Structural diversity; Visualization tools
Abstract :
[en] Lipidomics has developed rapidly over the past decade. Nontargeted lipidomics from biological samples remains a challenge due to the high structural diversity, the concentration range of lipids, and the complexity of biological samples. We introduce here the use of differential Kendrick's plots as a rapid visualization tool for a qualitative nontargeted analysis of lipids categories and classes from data generated by either liquid chromatography-mass spectrometry (LC-MS) or direct infusion (nESI-MS). Each lipid class is easily identified by comparison with the theoretical Kendrick plot pattern constructed from exact mass measurements and by using MSKendrickFilter, an in-house Python software. The lipids are identified with the LIPID MAPS database. In addition, in LC-MS, the software based on the Kendrick plots returns the retention time from all the lipids belonging to the same series. Lipid extracts from a yeast (Saccharomyces cerevisiae) are used as a model. An on/off case comparing Kendrick plots from two cell lines (prostate cancer cell lines treated or not with a DGAT2 inhibition) clearly shows the effect of the inhibition. Our study demonstrates the good performance of direct infusion as a fast qualitative screening method as well as for the analysis of chromatograms. A fast screening semiquantitative approach is also possible, while the targeted mode remains the golden standard for precise quantitative analysis.
Disciplines :
Chemistry
Author, co-author :
Hustin, Justine ; Université de Liège - ULiège > Molecular Systems (MolSys)
Kune, Christopher ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Far, Johann ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Debois, Delphine ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.) ; ZenTech S.A., Avenue du Pré Aily 10, 4031Liège, Belgique
Quinton, Loïc ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences)
Language :
English
Title :
Differential Kendrick's Plots as an Innovative Tool for Lipidomics in Complex Samples: Comparison of Liquid Chromatography and Infusion-Based Methods to Sample Differential Study.
Publication date :
07 December 2022
Journal title :
Journal of the American Society for Mass Spectrometry
We thank the Interreg EMR project EURLIPIDS (R-8598) for financial support. We acknowledge Lipometrix and the KU Leuven lipidomics core who cultured the cells and performed the lipid extraction on those. Thank you to the FEDER BIOMED HUB Technology Support (number 2.2.1/996) and the EU_FT-ICR_MS network (under Grant Agreement No.73107) for the funding of FTRMS on the SolariX XR 9.4T FT-ICR. Finally, we acknowledge Johnson & Johnson (Janssen) for the donation of the LTQ FT Ultra 7T instrument; H2020 Research Infrastructures
Breiding, M. Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends Biochem. Sci. 2014, 63 (8), 1-18, 10.1016/j.tibs.2016.08.010
Gross, R. W.; Han, X. Lipidomics at the interface of structure and function in systems biology. Chem. Biol. 2011, 18 (3), 284-291, 10.1016/j.chembiol.2011.01.014
Shevchenko, A.; Simons, K. Lipidomics: Coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 2010, 11 (8), 593-598, 10.1038/nrm2934
Zhao, Y. Y.; Vaziri, N. D.; Lin, R. C. Lipidomics: New insight into kidney disease. Adv. Clin. Chem. 2015, 68, 153-175, 10.1016/bs.acc.2014.11.002
Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 2016, 16 (11), 732-749, 10.1038/nrc.2016.89
Wang, J.; Han, X. Analytical challenges of shotgun lipidomics at different resolution of measurements. Trends Anal. Chem. 2019, 121, 115697, 10.1016/j.trac.2019.115697
Van Meer, G.; Voelker, D.; Feigenson, G. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112-124, 10.1038/nrm2330
Muro, E.; Atilla-Gokcumen, G. E.; Eggert, U. S. Lipids in cell biology: How can we understand them better?. Mol. Biol. Cell 2014, 25 (12), 1819-1823, 10.1091/mbc.e13-09-0516
Bou Khalil, M.; Hou, W.; Zhou, H.; Elisma, F.; Swayne, L.; Blanchard, A. P.; Yao, Z.; Bennett, S. A. I.; Figeys, D. Lipidomics Era: Accomplishments and Challenges. Mass Spectrom. Rev. 2010, 29, 877-929, 10.1002/mas.20294
Fahy, E.; Subramaniam, S.; Murphy, R. C.; Nishijima, M.; Raetz, C. R. H.; Shimizu, T.; Spener, F.; Van Meer, G.; Wakelam, M. J. O.; Dennis, E. A. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009, 50 (SUPPL), 9-14, 10.1194/jlr.R800095-JLR200
Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E. A.; Glass, C. K.; Merrill, A. H.; Murphy, R. C.; Raetz, C. R. H.; Russell, D. W.; Subramaniam, S. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007, 35 (Suppl. 1), 527-532, 10.1093/nar/gkl838
Haler, J. R. N.; Sisley, E. K.; Cintron-Diaz, Y. L.; Meitei, S. N.; Cooper, H. J.; Fernandez-Lima, F. Workflow for fast lipid tissue screening using LESA-FT-ICR-MS. Anal. Methods 2019, 11 (18), 2385-2395, 10.1039/C8AY02739K
Köfeler, H. C.; Fauland, A.; Rechberger, G. N.; Trötzmüller, M. Mass spectrometry based lipidomics: An overview of technological platforms. Metabolites 2012, 2 (1), 19-38, 10.3390/metabo2010019
Han, X.; Gross, R. W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics. J. Lipid Res. 2003, 44 (6), 1071-1079, 10.1194/jlr.R300004-JLR200
Han, X. Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem. 2002, 302 (2), 199-212, 10.1006/abio.2001.5536
Han, X.; Gross, R. W. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem. 2001, 295 (1), 88-100, 10.1006/abio.2001.5178
Han, X.; Gross, R. W. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 2005, 24 (3), 367-412, 10.1002/mas.20023
Han, X.; Yang, J.; Cheng, H.; Ye, H.; Gross, R. W. Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal. Biochem. 2004, 330 (2), 317-331, 10.1016/j.ab.2004.04.004
Han, X.; Gross, R. W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (22), 10635-10639, 10.1073/pnas.91.22.10635
Han, X.; Gross, R. W. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6 (12), 1202-1210, 10.1016/1044-0305(95)00568-4
Han, X.; Gross, R. W. Structural determination of lysophospholipid regioisomers by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1996, 118 (2), 451-457, 10.1021/ja952326r
Hsu, F. F.; Turk, J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: Mechanisms of fragmentation and structural characterization. J. Chromatogr. B 2009, 877 (26), 2673-2695, 10.1016/j.jchromb.2009.02.033
Froning, M.; Helmer, P. O.; Hayen, H. Identification and structural characterization of lipid A from Escherichia coli, Pseudomonas putida and Pseudomonas taiwanensis using liquid chromatography coupled to high-resolution tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34 (21), 1-9, 10.1002/rcm.8897
Sun, C.; Zhao, Y. Y.; Curtis, J. M. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry. Anal. Chem. Acta 2013, 762, 68-75, 10.1016/j.aca.2012.12.012
Harris, R. A.; May, J. C.; Stinson, C. A.; Xia, Y.; McLean, J. A. Determining Double Bond Position in Lipids Using Online Ozonolysis Coupled to Liquid Chromatography and Ion Mobility-Mass Spectrometry. Anal. Chem. 2018, 90 (3), 1915-1924, 10.1021/acs.analchem.7b04007
Poad, B. L. J.; Zheng, X.; Mitchell, T. W.; Smith, R. D.; Baker, E. S.; Blanksby, S. J. Online Ozonolysis Combined with Ion Mobility-Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses. Anal. Chem. 2018, 90 (2), 1292-1300, 10.1021/acs.analchem.7b04091
Kyle, J. E.; Zhang, X.; Weitz, K. K.; Monroe, M. E.; Ibrahim, Y. M.; Moore, R. J.; Cha, J.; Sun, X.; Lovelace, E. S.; Wagoner, J.; Polyak, S. J.; Metz, T. O.; Dey, S. K.; Smith, R. D.; Burnum-Johnson, K. E.; Baker, E. S. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 2016, 141 (5), 1649-1659, 10.1039/C5AN02062J
Kliman, M.; May, J. C.; McLean, J. A. Lipid Analysus and Lipidomics structurally Selective Ion Mobility-Mass Spectrometry. Biochim. Biophys. Acta 2011, 1811 (11), 935-945, 10.1016/j.bbalip.2011.05.016
Vasilopoulou, C. G.; Sulek, K.; Brunner, A. D.; Meitei, N. S.; Schweiger-Hufnagel, U.; Meyer, S. W.; Barsch, A.; Mann, M.; Meier, F. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat. Commun. 2020, 11 (1), 1-11, 10.1038/s41467-019-14044-x
Cajka, T.; Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal. Chem. 2014, 61, 192-206, 10.1016/j.trac.2014.04.017
Paglia, G.; Angel, P.; Williams, J. P.; Richardson, K.; Olivos, H. J.; Thompson, J. W.; Menikarachchi, L.; Lai, S.; Walsh, C.; Moseley, A.; Plumb, R. S.; Grant, D. F.; Palsson, B. O.; Langridge, J.; Geromanos, S.; Astarita, G. Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal. Chem. 2015, 87 (2), 1137-1144, 10.1021/ac503715v
Groessl, M.; Graf, S.; Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 2021, 140 (20), 6904-6911, 10.1039/C5AN00838G
Kyle, J. E.; Zhang, X.; Weitz, K. K.; Monroe, M. E.; Ibrahim, Y. M.; Moore, R. J.; Cha, J.; Sun, X.; Lovelace, E. S.; Wagoner, J.; Polyak, S. J.; Metz, T. O.; Dey, S. K.; Smith, R. D.; Kristin, E. Uncovering biologically significant lipid isomers with liquid chromatography, IMS and MS. Analyst 2016, 141 (5), 1649-1659, 10.1039/C5AN02062J
Lerno, L. A.; German, J. B.; Lebrilla, C. B. Method for the identification of lipid classes based on referenced Kendrick mass analysis. Anal. Chem. 2010, 82 (10), 4236-4245, 10.1021/ac100556g
Korf, A.; Vosse, C.; Schmid, R.; Helmer, P. O.; Jeck, V.; Hayen, H. Three-dimensional Kendrick mass plots as a tool for graphical lipid identification. Rapid Commun. Mass Spectrom. 2018, 32, 981-991, 10.1002/rcm.8117
Kune, C.; McCann, A.; Raphaël, L. R.; Arias, A. A.; Tiquet, M.; Van Kruining, D.; Martinez, P. M.; Ongena, M.; Eppe, G.; Quinton, L.; Far, J.; De Pauw, E. Rapid visualization of chemically related compounds using Kendrick mass defect as a filter in mass spectrometry imaging. Anal. Chem. 2019, 91 (20), 13112-13118, 10.1021/acs.analchem.9b03333
Matyash, V.; Liebisch, G.; Kurzchalia, T. V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49 (5), 1137-1146, 10.1194/jlr.D700041-JLR200
Eggers, L. F., Schwudke, D., Wenk, M. R., Eds. Lipid Extraction: Basics of the Methyl-tert-Butyl Ether Extraction BT-Encyclopedia of Lipidomics; Springer Netherlands: Dordrecht, 2016; pp 1-3.
Mohammad, K.; Jiang, H.; Hossain, M. I.; Titorenko, V. I. Quantitative analysis of the cellular lipidome of saccharomyces cerevisiae using liquid chromatography coupled with tandem mass spectrometry. J. Visualized Exp. 2020, 10.3791/60616
Chambers, M. C.; MacLean, B.; Burke, R. A Cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2017, 30 (10), 1, 10.1016/j.tibs.2016.08.010
Müller, W. H.; Verdin, A.; Kune, C.; Far, J.; De Pauw, E.; Malherbe, C.; Eppe, G. Dual-polarity SALDI FT-ICR MS imaging and Kendrick mass defect data filtering for lipid analysis. Anal Bioanal Chem. 2021, 413 (10), 2821-2830, 10.1007/s00216-020-03020-w
McCann, A.; Rappe, S.; La Rocca, R.; Tiquet, M.; Quinton, L.; Eppe, G.; Far, J.; De Pauw, E.; Kune, C. Mass shift in mass spectrometry imaging: comprehensive analysis and practical corrective workflow. Anal Bioanal Chem. 2021, 413, 2831-2844, 10.1007/s00216-021-03174-1
Liebisch, G.; Vizcaíno, J. A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W. J.; Schmitz, G.; Spener, F.; Wakelam, M. J. O. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013, 54 (6), 1523-1530, 10.1194/jlr.M033506
Dembitsky, V. M.; Srebnik, M. Natural halogenated fatty acids: their analogues and derivatives. Prog. Lipid Res. 2002, 41 (4), 315-367, 10.1016/S0163-7827(02)00003-6
Peterson, B. L.; Cummings, B. S. A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed. Chromatogr. 2006, 20 (3), 227-243, 10.1002/bmc.563
Cai, X.; Li, R. Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS. Sci. Rep. 2016, 6 (October), 1-10, 10.1038/srep36490
Spagou, K.; Tsoukali, H.; Raikos, N.; Gika, H.; Wilson, I. D.; Theodoridis, G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J. Sep. Sci. 2010, 33, 716-727, 10.1002/jssc.200900803
Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; A critical review on causes, evaluation, prevention and applications. Talanta 2013, 115, 104-122, 10.1016/j.talanta.2013.03.048
Yen, C. L. E.; Stone, S. J.; Koliwad, S.; Harris, C.; Farese, R. V. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008, 49 (11), 2283-2301, 10.1194/jlr.R800018-JLR200