Abed, A.A., Solowski, W.T., Simulation of swelling pressure evolution during infiltration in a bentonite block-pellet laboratory scale test. Japan. Geotechn. Soc. Spec. Publ. 7:2 (2019), 323–330.
Alonso, E.E., Gens, A., Josa, A., A constitutive model for partially saturated soils. Géotechnique 40:3 (1990), 405–430.
Alonso, E.E., Hoffmann, C., Romero, E., Pellet mixtures in isolation barriers. J. Rock Mech. Geotech. Eng. 2:1 (2010), 12–31, 10.3724/SP.J.1235.2010.00012.
Baryla, P., et al. Bentonite Mechanical Evolution – Experimental Work for the Support of Model Development and Validation. 2018, Technical Report - BEACON Project.
Bernachy-Barbe, F., Conil, N., Guillot, W., Talandier, J., Observed heterogeneities after hydration of MX-80 bentonite under pellet / powder form. Appl. Clay Sci., 189, 2020, 10.1016/j.clay.2020.105542.
Collin, F., Li, X.L., Radu, J.P., Charlier, R., Thermo-hydro-mechanical coupling in clay barriers. Eng. Geol. 64:2–3 (2002), 179–193.
Cui, Y.J., On the hydro-mechanical behaviour of MX80 bentonite-based materials. J. Rock Mech. Geotech. Eng. 9:3 (2017), 565–574, 10.1016/j.jrmge.2016.09.003.
Dardé, B., et al. Hydro-mechanical behaviour of high-density bentonite pellet upon partial hydration. Geotechn. Lett. 8:4 (2018), 1–23.
Dieudonné, A.C., Della Vecchia, G., Charlier, R., Water retention model for compacted bentonites. Can. Geotech. J. 54:7 (2017), 915–925.
Dueck, A., Nilsson, U., Tr-10-55 Thermo-Hydro-Mechanical Properties of MX-80. 2010, Results from Advanced Laboratory Tests. Technical Report - SKB.
Dueck, A., et al. Bentonite Homogenisation Laboratory Study, Model Development and Modelling of Homogenisation Processes. www.skb.se, 2019.
Gramegna, L., et al. Hydro-mechanical behaviour of a pellets based bentonite seal: numerical modelling of lab scale experiments. E3S Web Conf., 195, 2020, 04009.
Gramegna, L., et al. Pore size distribution evolution in pellets based bentonite hydration: comparison between experimental and numerical results. Eng. Geol., 304(May), 2022.
Hoffmann, C., Alonso, E.E., Romero, E., Hydro-Mechanical Behaviour of Bentonite Pellet Mixtures. Phys. Chem. Earth 32 (2007), 832–849.
Labalette, T., Harman, A., Dupuis, M.C., Ouzounian, G., Cigeo, the French geological repository project. Waste Management Conference, WM2013, Phoenix, USA, 2009, 9.
Liu, Z.R., et al. Particle size ratio and distribution effects on packing behaviour of crushed GMZ bentonite pellets. Powder Technol. 351 (2019), 92–101, 10.1016/j.powtec.2019.03.038.
Liu, Z.R., Cui, Y.J., Ye, W.M., Chen, B., et al. Investigation of the hydro-mechanical behaviour of GMZ bentonite pellet mixtures. Acta Geotech. 15:10 (2020), 2865–2875, 10.1007/s11440-020-00976-y.
Liu, Z.R., Cui, Y.J., Ye, W.M., Zhang, Z., et al. Investigation on vibration induced segregation behaviour of crushed GMZ bentonite pellet mixtures. Constr. Build. Mater., 241, 2020, 117949 https://www.sciencedirect.com/science/article/pii/S0950061819334026.
Lloret, A., et al. Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53:1 (2003), 27–40, 10.1680/geot.2003.53.1.27.
Martikainen, J., Laurila, T., Laboratory tests to evaluate bentonite homogenization. 2018, Saanio & Riekkola Oy, Helsinki.
Molinero, A., et al. In-depth characterisation of a mixture composed of powder / pellets MX80 bentonite. Appl. Clay Sci. 135 (2017), 538–546.
Molinero, A., et al. Investigation of the hydro-mechanical behaviour of a pellet/powder MX80 bentonite mixture using an infiltration column. Eng. Geol. 243:June (2018), 18–25, 10.1016/j.enggeo.2018.06.006.
Navarro, V., et al. From double to triple porosity modelling of bentonite pellet mixtures. Eng. Geol., 274(June), 2020, 105714, 10.1016/j.enggeo.2020.105714.
Pusch, R., Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products. Nucl. Technol. 45 (1979), 153–157.
Romero, E., A microstructural insight into compacted clayey soils and their hydraulic properties. Eng. Geol. 165 (2013), 3–19.
Romero, E., Della Vecchia, G., Jommi, C., An insight into the water retention properties of compacted clayey soils. Géotechnique 61:4 (2011), 313–328, 10.1680/geot.2011.61.4.313.
Salo, J.-P., Kukkola, T., Bentonite Pellets, an Alternative Buffer Material for Spent fuel Canister Deposition Holes. Workshop “Sealing of Radioactive Waster Repositories”, 1989, Braunschweig.
Sellin, P., Leupin, O.X., The use of clay as an engineered barrier in radioactive-waste management - a review. Clay Clay Miner. 61:6 (2014), 477–498.
Stavropoulou, E., Comportement Différé Des Interfaces Argilite/Béton: Caractérisation et Modélisation. 2017, Universite’ Grenoble-Alpes.
Talandier, J., Specifications for BEACON WP5: Testing, Verification and Validation of Models Step 1- Verification Cases. 2018, Technical Report - BEACON Project.
Van Geet, M., Volckaert, G., Roels, S., The use of microfocus X-Ray computed tomography in characterising the hydration of a clay pellet/powder mixture. Appl. Clay Sci. 29:2 (2005), 73–87.
Villar, M.V., Iglesias, R.J., Gutiérrez-Álvarez, C., Carbonell, B., Pellets/block bentonite barriers: laboratory study of their evolution upon hydration. Eng. Geol., 292, 2021.
Wang, Q., et al. Hydraulic conductivity and microstructure changes of compacted bentonite / sand mixture during hydration. Eng. Geol. 164 (2013), 67–76, 10.1016/j.enggeo.2013.06.013.
Zhang, Z., et al. Mechanical behavior of GMZ bentonite pellet mixtures over a wide suction range. Eng. Geol. 264 (2020), 325–336, 10.1016/j.clay.2015.10.015.