Activation of Interferon-Stimulated Genes following Varicella-Zoster Virus Infection in a Human iPSC-Derived Neuronal In Vitro Model Depends on Exogenous Interferon-α.
Boeren, Marlies; Van Breedam, Elise; Buyle-Huybrecht, Tamaricheet al.
[en] Varicella-zoster virus (VZV) infection of neuronal cells and the activation of cell-intrinsic antiviral responses upon infection are still poorly understood mainly due to the scarcity of suitable human in vitro models that are available to study VZV. We developed a compartmentalized human-induced pluripotent stem cell (hiPSC)-derived neuronal culture model that allows axonal VZV infection of the neurons, thereby mimicking the natural route of infection. Using this model, we showed that hiPSC-neurons do not mount an effective interferon-mediated antiviral response following VZV infection. Indeed, in contrast to infection with Sendai virus, VZV infection of the hiPSC-neurons does not result in the upregulation of interferon-stimulated genes (ISGs) that have direct antiviral functions. Furthermore, the hiPSC-neurons do not produce interferon-α (IFNα), a major cytokine that is involved in the innate antiviral response, even upon its stimulation with strong synthetic inducers. In contrast, we showed that exogenous IFNα effectively limits VZV spread in the neuronal cell body compartment and demonstrated that ISGs are efficiently upregulated in these VZV-infected neuronal cultures that are treated with IFNα. Thus, whereas the cultured hiPSC neurons seem to be poor IFNα producers, they are good IFNα responders. This could suggest an important role for other cells such as satellite glial cells or macrophages to produce IFNα for VZV infection control.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Boeren, Marlies; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium ; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium ; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
Van Breedam, Elise ; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
Buyle-Huybrecht, Tamariche; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium ; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium ; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
Lebrun, Marielle ; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie
Meysman, Pieter ; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), 2610 Antwerp, Belgium ; Adrem Data Lab, Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium ; Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, 2610 Antwerp, Belgium
Sadzot, Catherine ; Université de Liège - ULiège > Département des sciences de la vie
Van Tendeloo, Viggo F ; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
Mortier, Geert; Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2610 Antwerp, Belgium
Laukens, Kris ; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), 2610 Antwerp, Belgium ; Adrem Data Lab, Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium ; Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, 2610 Antwerp, Belgium
Ogunjimi, Benson; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium ; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), 2610 Antwerp, Belgium ; Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium ; Department of Paediatrics, Antwerp University Hospital, 2610 Antwerp, Belgium
Ponsaerts, Peter ; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
Delputte, Peter ; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium ; Infla-Med, University of Antwerp, 2610 Antwerp, Belgium
Language :
English
Title :
Activation of Interferon-Stimulated Genes following Varicella-Zoster Virus Infection in a Human iPSC-Derived Neuronal In Vitro Model Depends on Exogenous Interferon-α.
Brisson M. Edmunds W.J. Law B. Gay N.J. Walld R. Brownell M. Roos L.L. DE Serres G. Epidemiology of varicella zoster virus infection in Canada and the United Kingdom Epidemiol. Infect. 2001 127 305 314 10.1017/S0950268801005921
Zerboni L. Sen N. Oliver S.L. Arvin A.M. Molecular mechanisms of varicella zoster virus pathogenesis Nat. Rev. Genet. 2014 12 197 210 10.1038/nrmicro3215
Moffat J. Ku C.C. Zerboni L. Sommer M. Arvin A. VZV: Pathogenesis and the disease consequences of primary infection Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis Arvin A. Campadelli-Fiume G. Mocarski E. Moore P.S. Roizman B. Whitley R. Yamanishi K. Cambridge University Press Cambridge, UK 2007
Zerboni L. Ku C.-C. Jones C.D. Zehnder J.L. Arvin A.M. Varicella-zoster virus infection of human dorsal root ganglia in vivo Proc. Natl. Acad. Sci. USA 2005 102 6490 6495 10.1073/pnas.0501045102
Arvin A.M. Moffat J.F. Sommer M. Oliver S. Che X. Vleck S. Zerboni L. Ku C.-C. Varicella-Zoster Virus T Cell Tropism and the Pathogenesis of Skin Infection Curr. Top. Microbiol. Immunol. 2010 342 189 209 10.1007/82_2010_29
Mahalingam R. Messaoudi I. Gilden D. Simian Varicella Virus Pathogenesis Curr. Top. Microbiol. Immunol. 2010 342 309 321 10.1007/82_2009_6 20186611
Johnson R.W. Alvarez-Pasquin M.-J. Bijl M. Franco E. Gaillat J. Clara J.G. Labetoulle M. Michel J.-P. Naldi L. Sanmarti L.S. et al. Herpes zoster epidemiology, management, and disease and economic burden in Europe: A multidisciplinary perspective Ther. Adv. Vaccines 2015 3 109 120 10.1177/2051013615599151
Bilcke J. Ogunjimi B. Marais C. DE Smet F. Callens M. Callaert K. VAN Kerschaver E. Ramet J. VAN Damme P. Beutels P. The health and economic burden of chickenpox and herpes zoster in Belgium Epidemiol. Infect. 2012 140 2096 2109 10.1017/S0950268811002640
Panatto D. Bragazzi N.L. Rizzitelli E. Bonanni P. Boccalini S. Icardi G. Gasparini R. Amicizia D. Evaluation of the economic burden of Herpes Zoster (HZ) infection: A systematic literature review Hum. Vaccines Immunother. 2015 11 245 262 10.4161/hv.36160 25483704
Nagel M.A. Gilden D. Complications of Varicella Zoster Virus Reactivation Curr. Treat. Options Neurol. 2013 15 439 453 10.1007/s11940-013-0246-5
Chen N. Li Q. Yang J. Zhou M. Zhou N. He L. Antiviral treatment for preventing postherpetic neuralgia Cochrane Database Syst. Rev. 2014 2 CD006866 10.1002/14651858.CD006866.pub3 24500927
Dworkin R.H. Johnson R.W. Breuer J. Gnann J.W. Levin M.J. Backonja M. Betts R.F. Gershon A.A. Haanpää M.L. McKendrick M.W. et al. Recommendations for the Management of Herpes Zoster Clin. Infect. Dis. 2007 44 S1 S26 10.1086/510206 17143845
Ecarnot F. Bernabei R. Gabutti G. Giuffrida S. Michel J.-P. Rezza G. Maggi S. Adult vaccination as the cornerstone of successful ageing: The case of herpes zoster vaccination. A European Interdisciplinary Council on Ageing (EICA) expert focus group Aging 2019 31 301 307 10.1007/s40520-019-01154-1 30805865
Williams W.W. Lu P.J. O’Halloran A. Bridges C.B. Kim D.K. Pilishvili T. Hales C.M. Markowitz L.E. Vaccination coverage among adults, excluding influenza vaccination—United States, 2013 Morb. Mortal. Wkly. Rep. 2015 64 95 102
Williams W.W. Lu P.-J. O’Halloran A. Kim D.K. Grohskopf L.A. Pilishvili T. Skoff T.H. Nelson N.P. Harpaz R. Markowitz L.E. et al. Surveillance of Vaccination Coverage among Adult Populations—United States, 2015 MMWR. Surveill. Summ. 2017 66 1 28 10.15585/mmwr.ss6611a1 28472027
Ogunjimi B. Willem L. Beutels P. Hens N. Integrating between-host transmission and within-host immunity to analyze the impact of varicella vaccination on zoster eLife 2015 4 e07116 10.7554/eLife.07116 26259874
Arvin A.M.G.D. Fields Virology Knipe D.H.P. Lippincott Williams & Wilkins Philadelphia, PA, USA 2013 2015 2057
Lebrun M. Thelen N. Thiry M. Riva L. Ote I. Condé C. Vandevenne P. Di Valentin E. Bontems S. Sadzot-Delvaux C. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates Virology 2014 454–455 311 327 10.1016/j.virol.2014.02.023
Chaudhuri V. Sommer M. Rajamani J. Zerboni L. Arvin A.M. Functions of Varicella-Zoster Virus ORF23 Capsid Protein in Viral Replication and the Pathogenesis of Skin Infection J. Virol. 2008 82 10231 10246 10.1128/JVI.01890-07
Reichelt M. Brady J. Arvin A.M. The Replication Cycle of Varicella-Zoster Virus: Analysis of the Kinetics of Viral Protein Expression, Genome Synthesis, and Virion Assembly at the Single-Cell Level J. Virol. 2009 83 3904 3918 10.1128/JVI.02137-08
Kinchington P.R. Bookey D. Turse S.E. The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particles J. Virol. 1995 69 4274 4282 10.1128/jvi.69.7.4274-4282.1995
Kinchington P.R. Hougland J.K. Arvin A.M. Ruyechan W.T. Hay J. The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles J. Virol. 1992 66 359 366 10.1128/jvi.66.1.359-366.1992
Ouwendijk W.J.D. Depledge D.P. Rajbhandari L. Rovis T.L. Jonjic S. Breuer J. Venkatesan A. Verjans G.M.G.M. Sadaoka T. Varicella-zoster virus VLT-ORF63 fusion transcript induces broad viral gene expression during reactivation from neuronal latency Nat. Commun. 2020 11 6324 10.1038/s41467-020-20031-4
Depledge D.P. Ouwendijk W.J. Sadaoka T. Braspenning S. Mori Y. Cohrs R.J. Verjans G.M.G.M. Breuer J. A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene 61 Nat. Commun. 2018 9 1167 10.1038/s41467-018-03569-2 29563516
Biron C.A. Role of early cytokines, including alpha and beta interferons (IFN-α\β), in innate and adaptive immune responses to viral infections Semin. Immunol. 1998 10 383 390 10.1006/smim.1998.0138 9799713
Carter-Timofte M.E. Paludan S.R. Mogensen T.H. RNA Polymerase III as a Gatekeeper to Prevent Severe VZV Infections Trends Mol. Med. 2018 24 904 915 10.1016/j.molmed.2018.07.009 30115567
Paludan S.R. Bowie A.G. Horan K.A. Fitzgerald K.A. Recognition of herpesviruses by the innate immune system Nat. Rev. Immunol. 2011 11 143 154 10.1038/nri2937
Sironi M. Peri A.M. Cagliani R. Forni D. Riva S. Biasin M. Clerici M. Gori A. TLR3 Mutations in Adult Patients With Herpes Simplex Virus and Varicella-Zoster Virus Encephalitis J. Infect. Dis. 2017 215 1430 1434 10.1093/infdis/jix166 28368532
Ogunjimi B. Zhang S.-Y. Sørensen K.B. Skipper K.A. Carter-Timofte M. Kerner G. Luecke S. Prabakaran T. Cai Y. Meester J. et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections J. Clin. Investig. 2017 127 3543 3556 10.1172/JCI92280
Katze M.G. He Y. Gale M. Jr. Viruses and interferon: A fight for supremacy Nat. Rev. Immunol. 2002 2 675 687 10.1038/nri888
Gerada C. Campbell T.M. Kennedy J. McSharry B. Steain M. Slobedman B. Abendroth A. Manipulation of the Innate Immune Response by Varicella Zoster Virus Front. Immunol. 2020 11 1 10.3389/fimmu.2020.00001
Haberthur K. Messaoudi I. Animal Models of Varicella Zoster Virus Infection Pathogens 2013 2 364 382 10.3390/pathogens2020364 25437040
Kennedy P.G.E. Rovnak J. Badani H. Cohrs R.J. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation J. Gen. Virol. 2015 96 1581 1602 10.1099/vir.0.000128 25794504
Lee K.S. Zhou W. Scott-McKean J.J. Emmerling K.L. Cai G.-Y. Krah D.L. Costa A.C. Freed C.R. Levin M.J. Human Sensory Neurons Derived from Induced Pluripotent Stem Cells Support Varicella-Zoster Virus Infection PLoS ONE 2012 7 e53010 10.1371/journal.pone.0053010 23285249
Sadaoka T. Schwartz C.L. Rajbhandari L. Venkatesan A. Cohen J.I. Human Embryonic Stem Cell-Derived Neurons Are Highly Permissive for Varicella-Zoster Virus Lytic Infection J. Virol. 2018 92 e01108-17 10.1128/JVI.01108-17 29046461
Markus A. Grigoryan S. Sloutskin A. Yee M.B. Zhu H. Yang I.H. Thakor N.V. Sarid R. Kinchington P.R. Goldstein R.S. Varicella-Zoster Virus (VZV) Infection of Neurons Derived from Human Embryonic Stem Cells: Direct Demonstration of Axonal Infection, Transport of VZV, and Productive Neuronal Infection J. Virol. 2011 85 6220 6233 10.1128/JVI.02396-10
Markus A. Lebenthal-Loinger I. Yang I.H. Kinchington P.R. Goldstein R.S. An In Vitro Model of Latency and Reactivation of Varicella Zoster Virus in Human Stem Cell-Derived Neurons PLoS Pathog. 2015 11 e1004885 10.1371/journal.ppat.1004885
Sadaoka T. Depledge D.P. Rajbhandari L. Venkatesan A. Breuer J. Cohen J.I. In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency Proc. Natl. Acad. Sci. USA 2016 113 E2403 E2412 10.1073/pnas.1522575113
Koyuncu O.O. MacGibeny M.A. Hogue I.B. Enquist L.W. Compartmented neuronal cultures reveal two distinct mechanisms for alpha herpesvirus escape from genome silencing PLoS Pathog. 2017 13 e1006608 10.1371/journal.ppat.1006608
Van Breedam E. Nijak A. Buyle-Huybrecht T. Di Stefano J. Boeren M. Govaerts J. Quarta A. Swartenbroekx T. Jacobs E.Z. Menten B. et al. Luminescent Human iPSC-Derived Neurospheroids Enable Modeling of Neurotoxicity After Oxygen-glucose Deprivation Neurotherapeutics 2022 19 550 569 10.1007/s13311-022-01212-z
Sloutskin A. Goldstein R. Infectious Focus Assays and Multiplicity of Infection (MOI) Calculations for Alpha-herpesviruses Bio-protocol 2014 4 e1295 10.21769/BioProtoc.1295
Sloutskin A. Goldstein R.S. Laboratory preparation of Varicella-Zoster Virus: Concentration of virus-containing supernatant, use of a debris fraction and magnetofection for consistent cell-free VZV infections J. Virol. Methods 2014 206 128 132 10.1016/j.jviromet.2014.05.027 24925132
Koressaar T. Remm M. Enhancements and modifications of primer design program Primer3 Bioinformatics 2007 23 1289 1291 10.1093/bioinformatics/btm091 17379693
Hendling M. Pabinger S. Peters K. Wolff N. Conzemius R. Barišić I. Oli2go: An automated multiplex oligonucleotide design tool Nucleic Acids Res. 2018 46 W252 W256 10.1093/nar/gky319
Cohrs R.J. Gilden D.H. Prevalence and Abundance of Latently Transcribed Varicella-Zoster Virus Genes in Human Ganglia J. Virol. 2007 81 2950 2956 10.1128/JVI.02745-06 17192313
Grose C. Yu X. Cohrs R.J. Carpenter J.E. Bowlin J.L. Gilden D. Aberrant Virion Assembly and Limited Glycoprotein C Production in Varicella-Zoster Virus-Infected Neurons J. Virol. 2013 87 9643 9648 10.1128/JVI.01506-13 23804641
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res. 2001 29 e45 10.1093/nar/29.9.e45
Reder A.T. Feng X. How Type I Interferons Work in Multiple Sclerosis and Other Diseases: Some Unexpected Mechanisms J. Interf. Cytokine Res. 2014 34 589 599 10.1089/jir.2013.0158
Talpaz M. Hehlmann R. Quintás-Cardama A. Mercer J. Cortes J. Re-emergence of interferon-α in the treatment of chronic myeloid leukemia Leukemia 2012 27 803 812 10.1038/leu.2012.313
Delhaye S. Paul S. Blakqori G. Minet M. Weber F. Staeheli P. Michiels T. Neurons produce type I interferon during viral encephalitis Proc. Natl. Acad. Sci. USA 2006 103 7835 7840 10.1073/pnas.0602460103
Vandevenne P. Lebrun M. El Mjiyad N. Ote I. Di Valentin E. Habraken Y. Dortu E. Piette J. Sadzot-Delvaux C. The Varicella-Zoster Virus ORF47 Kinase Interferes with Host Innate Immune Response by Inhibiting the Activation of IRF3 PLoS ONE 2011 6 e16870 10.1371/journal.pone.0016870
Sen N. Sommer M. Che X. White K. Ruyechan W.T. Arvin A.M. Varicella-Zoster Virus Immediate-Early Protein 62 Blocks Interferon Regulatory Factor 3 (IRF3) Phosphorylation at Key Serine Residues: A Novel Mechanism of IRF3 Inhibition among Herpesviruses J. Virol. 2010 84 9240 9253 10.1128/JVI.01147-10 20631144
Nagel M.A. James S.F. Traktinskiy I. Wyborny A. Choe A. Rempel A. Baird N.L. Gilden D. Inhibition of Phosphorylated-STAT1 Nuclear Translocation and Antiviral Protein Expression in Human Brain Vascular Adventitial Fibroblasts Infected with Varicella-Zoster Virus J. Virol. 2014 88 11634 11637 10.1128/JVI.01945-14
Ambagala A.P.N. Cohen J.I. Varicella-Zoster Virus IE63, a Major Viral Latency Protein, Is Required To Inhibit the Alpha Interferon-Induced Antiviral Response J. Virol. 2007 81 7844 7851 10.1128/JVI.00325-07 17507475
Verweij M.C. Wellish M. Whitmer T. Malouli D. Lapel M. Jonjic S. Haas J.G. DeFilippis V.R. Mahalingam R. Früh K. Varicella Viruses Inhibit Interferon-Stimulated JAK-STAT Signaling through Multiple Mechanisms PLoS Pathog. 2015 11 e1004901 10.1371/journal.ppat.1004901 25973608
Como C.N. Pearce C.M. Cohrs R.J. Baird N.L. Interleukin-6 and type 1 interferons inhibit varicella zoster virus replication in human neurons Virology 2018 522 13 18 10.1016/j.virol.2018.06.013 29979960
Grigoryan S. Kinchington P.R. Yang I.H. Selariu A. Zhu H. Yee M. Goldstein R.S. Retrograde axonal transport of VZV: Kinetic studies in hESC-derived neurons J. Neurovirol. 2012 18 462 470 10.1007/s13365-012-0124-z
De Regge N. Van Opdenbosch N. Nauwynck H.J. Efstathiou S. Favoreel H.W. Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro PLoS ONE 2010 5 e13076 10.1371/journal.pone.0013076
Lenschow D.J. Lai C. Frias-Staheli N. Giannakopoulos N.V. Lutz A. Wolff T. Osiak A. Levine B. Schmidt R.E. García-Sastre A. et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses Proc. Natl. Acad. Sci. USA 2007 104 1371 1376 10.1073/pnas.0607038104
Desloges N. Rahaus M. Wolff M.H. Role of the protein kinase PKR in the inhibition of varicella-zoster virus replication by beta interferon and gamma interferon J. Gen. Virol. 2005 86 1 6 10.1099/vir.0.80466-0
Ku C. Che X. Reichelt M. Rajamani J. Schaap-Nutt A. Huang K. Sommer M.H. Chen Y. Arvin A.M. Herpes simplex virus-1 induces expression of a novel MxA isoform that enhances viral replication Immunol. Cell Biol. 2010 89 173 182 10.1038/icb.2010.83
Thapa M. Welner R.S. Pelayo R. Carr D.J. CXCL9 and CXCL10 Expression Are Critical for Control of Genital Herpes Simplex Virus Type 2 Infection through Mobilization of HSV-Specific CTL and NK Cells to the Nervous System J. Immunol. 2008 180 1098 1106 10.4049/jimmunol.180.2.1098 18178850
Srivastava R. Khan A.A. Chilukuri S. Syed S.A. Tran T.T. Furness J. Bahraoui E. BenMohamed L. CXCL10/CXCR3-Dependent Mobilization of Herpes Simplex Virus-Specific CD8(+) T(EM) and CD8(+) T(RM) Cells within Infected Tissues Allows Efficient Protection against Recurrent Herpesvirus Infection and Disease J. Virol. 2017 91 e00278-17 10.1128/JVI.00278-17 28468883
Steain M. Sutherland J.P. Rodriguez M. Cunningham A.L. Slobedman B. Abendroth A. Analysis of T Cell Responses during Active Varicella-Zoster Virus Reactivation in Human Ganglia J. Virol. 2014 88 2704 2716 10.1128/JVI.03445-13 24352459
Arnold N. Girke T. Sureshchandra S. Messaoudi I. Acute Simian Varicella Virus Infection Causes Robust and Sustained Changes in Gene Expression in the Sensory Ganglia J. Virol. 2016 90 10823 10843 10.1128/JVI.01272-16 27681124