Chemical fertilizers; Data envelopment analysis; Environmental impact; Life cycle assessment; Respiratory inorganics; Geography, Planning and Development; Economics and Econometrics; Management, Monitoring, Policy and Law
Abstract :
[en] Cotton is one of the important crops that play an important role in creating a livelihood for rural people in many parts of Iran. Cotton production necessitates a large amount of resources (e.g., fossil energy and agrochemicals, all of which have the potential to damage the environment in various ways). The purpose of the current study was to evaluate the environmental effects of cotton production in the South Khorasan Province of Iran. For this purpose, life cycle assessment (LCA) and data envelopment analysis (DEA) techniques have been applied to investigate the environmental impacts of cotton production. LCA is a practical method to evaluate the environment on the product flow, in which all aspects of the product life cycle are examined by a comprehensive approach. Furthermore, combining the LCA method with other managerial strategies such as DEA could allow researchers to provide decision-makers with more practical and interpretable data. The findings of the efficiency test showed that the average technical efficiency, pure technical efficiency, and scale efficiency were 0.81, 0.92, and 0.87, respectively. Respiratory inorganics (i.e., respiratory effects resulting from winter smog caused by emissions of dust, sulfur, and nitrogen oxides to air) posed the greatest environmental burden in cotton production, followed by non-renewable energy, carcinogens, and global warming. In addition, the highest effects were on human health, and then, on resources and climate change. Energy, on-system pollution, and waste played a crucial role in the environmental impacts of cotton processing. This study suggests improving farmers' knowledge toward the optimum application of chemical fertilizers, or their substitution with green fertilizers, which reduces the environmental effect of growing cotton in the area.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Naderi Mahdei, Karim ; Agricultural Extension and Education Department, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
Esfahani, Seyed Mohammad Jafar; Assistant Professor of Agricultural Planning, Economic and Rural Development Institute (APERDRI), Tehran, Iran
Lebailly, Philippe ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement
Dogot, Thomas ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement
Van Passel, Steven; Department of Engineering Management, University of Antwerp, Antwerp, Belgium
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement ; Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania
Language :
English
Title :
Environmental impact assessment and efficiency of cotton: the case of Northeast Iran
Altenbuchner, C., Vogel, S., & Larcher, M. (2018). Social, economic and environmental impacts of organic cotton production on the livelihood of smallholder farmers in Odisha India. Renewable Agriculture and Food Systems, 33(4), 373–385. DOI: 10.1017/S174217051700014X
Arabmaldar, A., Mensah, E. K., & Toloo, M. (2021). Robust worst-practice interval DEA with non-discretionary factors. Expert Systems with Applications, 182, 115256. DOI: 10.1016/j.eswa.2021.115256
Avadí, A., Vazquez-Rowe, I., & Freon, P. (2014). Eco-efficiency assessment of the Peruvian anchoveta steel and wooden fleets using the LCA & DEA framework. Journal of Cleaner Production, 70, 118–131. DOI: 10.1016/j.jclepro.2014.01.047
Azizi, H., & Fathi Ajirloo, S. (2010). Measurement of overall performances of decision-making units using ideal and anti-ideal decision-making units. Computers and Industrial Engineering, 59(3), 411–418. DOI: 10.1016/j.cie.2010.05.013
Azizi, H., & Wang, Y. (2013). Improved DEA models for measuring interval efficiencies of decision-making units. Measurement, 46(3), 1325–1332. DOI: 10.1016/j.measurement.2012.11.050
Beagle, E., & Belmont, E. (2019). Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States. Energy Policy, 128, 267–275. DOI: 10.1016/j.enpol.2019.01.006
Bashari, A., Shakeri, M., Shirvan, A. R., & Najafabadi, S. A. N. (2018). Functional finishing of textiles via nanomaterials (pp. 1–70). Hoboken, NJ: Nanomaterials in the Wet Processing of Textiles.
Bolandnazar, E., Keyhani, A., & Omid, M. (2014). Determination of efficient and inefficient greenhouse cucumber producers using data envelopment analysis approach, a case study: Jiroft city in Iran. Journal of Cleaner Production, 79, 108–115. DOI: 10.1016/j.jclepro.2014.05.027
Buonocore, E., Vanoli, L., Carotenuto, A., & Ulgiati, S. (2015). Integrating life cycle assessment and energy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy, 86, 476–487. DOI: 10.1016/j.energy.2015.04.048
Brondani, M., de Oliveira, J. S., Mayer, F. D., et al. (2019). Life cycle assessment of distillation columns manufacturing. Environment, Development and Sustainability. 10.1007/s10668-019-00459-5 DOI: 10.1007/s10668-019-00459-5
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. DOI: 10.1016/0377-2217(78)90138-8
Chen, B., Yang, S., Cao, Q., & Qian, Y. (2020). Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse? Energy Policy, 137, 111107. DOI: 10.1016/j.enpol.2019.111107
Colley, T. A., Olsen, S. I., Birkved, M., & Hauschild, M. Z. (2019). Delta life cycle assessment of regenerative agriculture in a sheep farming system. Integrated Environmental Assessment and Management, 16(2), 282–290. DOI: 10.1002/ieam.4238
Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through life cycle assessment: The case study of tomato products chain. Journal of Cleaner Production, 78, 121–130. DOI: 10.1016/j.jclepro.2014.04.083
De Koeijer, T. J., Wossink, G. A. A., Struik, P. C., & Renkema, J. A. (2002). Measuring agricultural sustainability in terms of efficiency: The case of dutch sugar beet growers. Journal of Environmental Management, 66, 9–17. DOI: 10.1006/jema.2002.0578
Ebrahimi, R., & Salehi, M. (2015). Investig ation of CO2 emission reduction and improving energy use efficiency of button mushroom production using data envelopment analysis. Journal of Cleaner Production, 103, 112–119. DOI: 10.1016/j.jclepro.2014.02.032
Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies (IGES): Hayama.
Enríquez, J. G., Sánchez-Begínes, J. M., Domínguez-Mayo, F. J., García-García, J. A., & Escalona, M. J. (2019). An approach to characterize and evaluate the quality of product lifecycle management software systems. Computer Standards and Interfaces, 61, 77–88. DOI: 10.1016/j.csi.2018.05.003
Faist Emmenegger, M. C., Reinhard, J., & Zah, R. (2009). SQCB - Sustainability quick check for biofuels intermediate background report. Dübendorf: Agroscope Reckenholz-Tänikon.
Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinee, J., Heijungs, R., Hellweg, S., & Suh, S. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91, 1–21. DOI: 10.1016/j.jenvman.2009.06.018
Fong, S. J., Li, G., Dey, N., Crespo, R. G., & Herrera-Viedma, E. (2020). Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Applied Soft Computing, 93, 106282. DOI: 10.1016/j.asoc.2020.106282
Foteinis, S., & Chatzisymeon, E. (2016). Life cycle assessment of organic versus conventional agriculture. A case study of lettuce cultivation in Greece. Journal of Cleaner Production, 112, 2462–2471. DOI: 10.1016/j.jclepro.2015.09.075
Garrels, M. M. (2018). Laboratory and diagnostic testing in ambulatory care e-book: A guide for health care professionals. Elsevier Health Sciences.
Galanopoulos, K., Aggelopoulos, S., Kamenidou, I., & Mattas, K. (2006). Assessing the effects of managerial and production practices on the efficiency of commercial pig farming. Agricultural Systems, 88(2–3), 125–141. DOI: 10.1016/j.agsy.2005.03.002
Gatimbu, K. K., Ogada, M. J., & Budambula, N. L. M. (2019). Environmental efficiency of small-scale tea processors in Kenya: an inverse data envelopment analysis (DEA) approach. Environment, Development and Sustainability, 22(4), 3333–3345. 10.1007/s10668-019-00348-x DOI: 10.1007/s10668-019-00348-x
Goedkoop, M., Spriensma, R. (2001). The eco-indicator99: A damage oriented method for life cycle impact assessment: Methodology report.
Heller, M. C., & Keoleian, G. A. (2011). Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States. International Journal of Environmental Science and Technology, 45(5), 1903–1910.
Huang, W., Wu, F., Han, W., Li, Q., Han, Y., Wang, G., & Wang, Z. (2022). Carbon footprint of cotton production in China: Composition, spatiotemporal changes and driving factors. Science of the Total Environment, 821, 153407. DOI: 10.1016/j.scitotenv.2022.153407
Humbert, S., De Schryver, A., Margni, M., Jolliet, O. (2012). IMPACT 2002: User Guide. Draft for Version Q. 2.
Iriarte, A., Rieradevall, J., & Gabarrell, X. (2010). Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production, 18(4), 336–345. DOI: 10.1016/j.jclepro.2009.11.004
Ishengoma, F., & Athuman, M. (2018). Internet of things to improve agriculture in subsahara Africa-a case study. International Journal of Advances in Scientific Research and Engineering, 6, 8–11. DOI: 10.31695/IJASRE.2018.32739
ISO. (2006a). ISO 14040 International Standard. In: Environmental management–life cycle assessment–principles and framework. Geneva, International Organisation for Standardization.
ISO. (2006b). International Organization for Standardization ISO 14044. Environmental Managemente Life Cycle Assessment-erequirements and Guidelines.
Jalili, D., RadFard, M., Soleimani, H., Nabavi, S., Akbari, H., Akbari, H., & Adibzadeh, A. (2018). Data on nitrate–nitrite pollution in the groundwater resources a Sonqor plain in Iran. Data in Brief, 20, 394–401. DOI: 10.1016/j.dib.2018.08.023
Jiang, R., & Wu, P. (2019). Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions. Transportation Research Part d: Transport and Environment, 77, 148–163. DOI: 10.1016/j.trd.2019.10.010
Keyes, S., Tyedmers, P., & Beazley, K. (2014). Evaluating the environmental impacts of conventional and organic apple production in Nova Scotia, Canad a, through life cycle assessment. Journal of Cleaner Production, 104, 40–51. DOI: 10.1016/j.jclepro.2015.05.037
Khatri, P., Jain, S., & Pandey, S. A. (2017). Cradle-to-gate assessment of environmental impacts for production of mustard oil using life cycle assessment approach. Journal of Cleaner Production, 166, 988–997. DOI: 10.1016/j.jclepro.2017.08.109
Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., & Clark, S. (2014a). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183–192. DOI: 10.1016/j.jclepro.2013.09.057
Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Shariati, H. R., Anuar, N. B., & Mat Kiah, M. L. (2015). Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. Journal of Cleaner Production, 86, 67–77. DOI: 10.1016/j.jclepro.2014.08.062
Khoshnevisan, B., Rafiee, S., & Mousazadeh, H. (2013a). Environmental impact assessment of open field and greenhouse strawberry production. European Journal of Agronomy, 50, 29–37. DOI: 10.1016/j.eja.2013.05.003
Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2014b). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183–192. DOI: 10.1016/j.jclepro.2013.09.057
Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., & Sefeedpari, P. (2013b). Prognostication of environmental indices in potato production using artificial neural networks. Journal of Cleaner Production, 51(402), 409.
Khoshnevisan, B., Rajaeifar, M. A., Clark, S., Shamahirband, S., Anuar, N. B., Mohd Shuib, N. L., & Gani, A. (2014). Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of the Total Environment, 481, 242–251. DOI: 10.1016/j.scitotenv.2014.02.052
Knudsen, M. T., Yu-Hui, Q., Yan, L., & Halberg, N. (2010). Environmental assessment of organic soybean (Glycine max) imported from China to Denmark: A case study. Journal of Cleaner Production, 18(14), 1431–1439. DOI: 10.1016/j.jclepro.2010.05.022
Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154, 437–446. DOI: 10.1016/S0377-2217(03)00180-2
Kumar, S., Saini, N., & Mohapatra, S. K. (2016). Producer gas production from cotton stalk and sugarcane bagasse in a downdraft gasifier: Composition and higher heating value investigation. Journal of Basic and Applied Engineering Research, 3, 1034–1037.
Kuosmanen, T., & Kortelainen, M. (2005). Measuring eco-efficiency of production with data envelopment analysis. Journal of Industrial Ecology, 9(4), 59–72. DOI: 10.1162/108819805775247846
Maaoui, M., Boukchina, R., & Hajjaji, N. (2020). Environmental life cycle assessment of Mediterranean tomato: Case study of a Tunisian soilless geothermal multi-tunnel greenhouse. Environment, Development and Sustainability. 10.1007/s10668-020-00618-z DOI: 10.1007/s10668-020-00618-z
Mahlknecht, J., González-Bravo, R., & Loge, F. J. (2020). Water-energy-food security: A nexus perspective of the current situation in Latin America and the Caribbean. Energy, 194, 116824. DOI: 10.1016/j.energy.2019.116824
Mahmud, M. A., Huda, N., Farjana, S. H., & Lang, C. (2019). Comparative life cycle environmental impact analysis of lithium-ion (LiIo) and nickel-metal hydride (NiMH) batteries. Batteries, 5(1), 22. DOI: 10.3390/batteries5010022
Martinopoulos, G. (2020). Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis. Applied Energy, 257, 114035. DOI: 10.1016/j.apenergy.2019.114035
Mobtaker, H. G., Akram, A., & Keyhani, A. (2012). Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy for Sustainable Development, 16, 84–89. DOI: 10.1016/j.esd.2011.10.009
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Dalgaard, T., & Knudsen, T. (2015). Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production, 106, 521–532. DOI: 10.1016/j.jclepro.2014.05.008
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S. H., & Nonhebel, S. (2014). Energy use efficiencyand greenhouse gas emissions of farming systems in North Iran. Renewable and Sustainable Energy Reviews, 30, 724–733. DOI: 10.1016/j.rser.2013.11.012
Mohmad, R. S., Verrastro, V., Cardone, G., Bteich, M. R., Favia, M., Moretti, M., & Roma, R. (2014). Optimization of organic and conventional olive agricultural practices from a life cycle assessme nt and life cycle costing perspectives. Journal of Cleaner Production, 70, 78–89. DOI: 10.1016/j.jclepro.2014.02.033
Mohseni, P., Borghei, A. M., & Khanali, M. (2018). Coupled life cycle assessment and data envelopment analysis for mitigation of environmental impacts and enhancement of energy efficiency in grape production. Journal of Cleaner Production, 197, 937–947. DOI: 10.1016/j.jclepro.2018.06.243
Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011a). Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36(5), 2765–2772. DOI: 10.1016/j.energy.2011.02.016
Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011b). Optimization of energy consumption for soybean production using data envelopment analysis (DEA) approach. Applied Energy, 88(11), 3765–3772. DOI: 10.1016/j.apenergy.2011.04.021
Mustafa, F. S., Khan, R. U., & Mustafa, T. (2021). Technical efficiency comparison of container ports in Asian and Middle East region using DEA. The Asian Journal of Shipping and Logistics, 37(1), 12–19. DOI: 10.1016/j.ajsl.2020.04.004
Nemecek, T., Kagi, T. (2007). Life cycle inventories of agricultural production systems. Eco invent report No. 15 Dübendorf, CH. Swiss Centre for Life Cycle Inventories. Retrieved from http://www.ecoinvent.org /documentation /reports/.
Nemecek, T., & Schnetzer, J. (2011). Methods of assessment of direct field emissions for LCIs of agricultural production systems (p. 35). Zurich: Agroscope Reckenholz-Tänikon Research Station ART.
Nemecek, T., Bengoa, X., Lansche, J., Mouron, P., Rossi, V., & Humbert, S. (2014). Methodological guidelines for the life cycle inventory of agricultural products Version 2.0. World Food LCA Database (WFLDB): Quantis and Agroscope, Lausanne and Zurich, Switzerland.
Nemecek, T., Huguenin-Elie, O., Dubois, D., Gaillard, G., Schaller, B., & Chervet, A. (2011). Life cycle assessment of Swiss farming systems: II Extensive and Intensive production. Agricultural Systems, 104(3), 233–245. DOI: 10.1016/j.agsy.2010.07.007
Nemecek, T., Julian, S., & Jürgen, R. (2014). Updated and harmonised greenhouse gas emissions for crop inventories. The International Journal of Life Cycle Assessment, 21, 1–18.
Odey, G., Adelodun, B., Kim, S. H., & Choi, K. S. (2021). Status of environmental life cycle assessment (LCA): A case study of South Korea. Sustainability, 13(11), 6234. DOI: 10.3390/su13116234
Padilla, F. M., Gallardo, M., & Manzano-Agugliaro, F. (2018). Global trends in nitrate leaching research in the 1960–2017 period. Science of the Total Environment, 643, 400–413. DOI: 10.1016/j.scitotenv.2018.06.215
Pauer, E., Wohner, B., Heinrich, V., & Tacker, M. (2019). Assessing the environmental sustainability of food packaging: An extended life cycle assessment including packaging-related food losses and waste and circularity assessment. Sustainability, 11(3), 925. DOI: 10.3390/su11030925
Pennington, D. W., Margni, M., Amman, C., & Jolliet, O. (2005). Multimedia fate and human intake modeling: Spatial versus non-spatial insights for chemical emissions in Western Europe. International Journal of Environmental Science and Technology, 39(4), 1119–1128.
Picazo-Tadeo, A. J., Gomez-Limon, J. A., & Reig-Martínez, E. (2011). Assessing farming eco-efficiency: A data envelopment analysis approach. Journal of Environmental Management, 92, 1154–1164. DOI: 10.1016/j.jenvman.2010.11.025
Pishgar Komleh, S. H., Keyhani, A., Rafiee, S., & Sefeedpary, P. (2011). Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy, 36, 3335–3341. DOI: 10.1016/j.energy.2011.03.029
Pishgar-Komleh, S. H., Ghahderijani, M., & Sefeedpari, P. (2012). Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production, 33, 183–191. DOI: 10.1016/j.jclepro.2012.04.008
Rafiee, S., Khoshnevisan, B., Mohammadi, I., Aghbashlo, M., Mousazadeh, H., & Clark, S. (2016). Sustainability evaluation of pasteurized milk production with a life cycle assessment approach: An Iranian case study. Science of the Total Environment, 562, 614–627. DOI: 10.1016/j.scitotenv.2016.04.070
Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B., & Rafiee, S. (2015). Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, 51, 886–8998. DOI: 10.1016/j.rser.2015.06.037
Reig-Martinez, R., & Picazo-Tadeo, A. J. (2004). Analysing farming systems with data envelopment analysis: Citrus farming in Spain. Agricultural Systems, 82, 17–30. DOI: 10.1016/j.agsy.2003.12.002
Safa, M., & Samarasinghe, S. (2012). CO2 emissions from farm inputs: Case study of wheat production in canterbury New Zealand. Environmental Pollution, 171, 126–132. DOI: 10.1016/j.envpol.2012.07.032
Salehi, M., Ebrahimi, R., Maleki, A., & Mobtaker, H. G. (2014). An assessment of energy modeling and input costs for greenhouse button mushroom production in Iran. Journal of Cleaner Production, 64, 377–383. DOI: 10.1016/j.jclepro.2013.09.005
Salehi, S., Arashpour, M., Kodikara, J., & Guppy, R. (2021). Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials. Journal of Cleaner Production, 313, 127936. DOI: 10.1016/j.jclepro.2021.127936
Silvestro, P. C., Pignatti, S., Yang, H., Yang, G., Pascucci, S., Castaldi, F., & Casa, R. (2017). Sensitivity analysis of the aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications. PLoS ONE, 12(11), e0187485. DOI: 10.1371/journal.pone.0187485
Sanchez, T. R., Perzanowski, M., & Graziano, J. H. (2016). Inorganic arsenic and respiratory health, from early life exposure tosex-specific effects: A systematic review. Environmental Research, 147, 537–555. DOI: 10.1016/j.envres.2016.02.009
Smith, R., & Watson, A. (2018). Working with nature to improve the environment and profitability of irrigated cotton production at ‘Kilmarnock’, Namoi Valley, New South Wales. Ecological Management and Restoration, 19, 63–72. DOI: 10.1111/emr.12321
Solbär, L., & Keskitalo, E. C. H. (2017). A role for authority supervision in impact assessment? Examples from Finnish EIA reviews. Arctic Review, 27, 8.
South Khorasan jihad of agriculture organization. (2015). Statistics of agriculture. Available in: http://kj-agrijahad.ir/dbagri/ (In Persian).
South Khorasan provincial government. (2016). Last divisions in province, Sarayan County. Available in: http://sk-sarayan.ir/ (in Persian)
Soltani, A., Rajabi, M. H., Zeinali, E., & Soltani, E. (2013). Energy inputs and greenhouse gases emissions in wheat production in Gorgan Iran. Energy, 50, 54–61. DOI: 10.1016/j.energy.2012.12.022
Tabatabaie, S. H., Rafiee, S., & Keyhani, A. (2012). Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran. Energy, 44(1), 211–216. DOI: 10.1016/j.energy.2012.06.036
Tabatabaie, S. M., Rafiee, S., Keyhani, A., & Heidari, M. (2013). Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran. Renewable Energy, 51, 7–12. DOI: 10.1016/j.renene.2012.08.077
Vazquez-Rowe, I., Villanueva-Rey, P., Iribarren, D., Moreira, M. T., & Feijoo, G. (2012). Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). Journal of Cleaner Production, 27, 92–102. DOI: 10.1016/j.jclepro.2011.12.039
Wiesen, K., & Wirges, M. (2017). From cumulated energy demand to cumulated raw material demand: The material footprint as a sum parameter in life cycle assessment. Energy, Sustainability and Society, 7(1), 1–13. DOI: 10.1186/s13705-017-0115-2
Wowra, K., Zeller, V., & Schebek, L. (2020). Nitrogen in life cycle assessment (LCA) of agricultural crop production systems: Comparative analysis of regionalization approaches. Science of the Total Environment, 763, 143009. DOI: 10.1016/j.scitotenv.2020.143009
Yasin, S., & Sun, D. (2019). Propelling textile waste to ascend the ladder of sustainability: EOL study on probing environmental parity in technical textiles. Journal of Cleaner Production, 233, 1451–1464. DOI: 10.1016/j.jclepro.2019.06.009
Yasin, S., Behary, N., Perwuelz, A., & Guan, J. (2018). Life cycle assessment of flame retardant cotton textiles with optimized end-of-life phase. Journal of Cleaner Production, 172, 1080–1088. DOI: 10.1016/j.jclepro.2017.10.198
Yousefi, M., Khoramivafa, M., & Mondani, F. (2014). Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment, 92, 501–505. DOI: 10.1016/j.atmosenv.2014.04.050
Yousefi, M., MahdaviDamghani, A., & Khoramivafa, M. (2014). Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of the Total Environment, 493, 330–335. DOI: 10.1016/j.scitotenv.2014.06.004
Zhang, C., & Rosentrater, K. A. (2019). Estimating economic and environmental impacts of red-wine-making processes in the USA. Fermentation, 5(3), 77. DOI: 10.3390/fermentation5030077
Zhu, N., Zhu, C., & Emrouznejad, A. (2021). A combined machine learning algorithms and DEA method for measuring and predicting the efficiency of Chinese manufacturing listed companies. Journal of Management Science and Engineering, 6, 435–448. 10.1016/j.jmse.2020.10.001 DOI: 10.1016/j.jmse.2020.10.001
Zulfiquar, S., Yasin, M. A., Bakhsh, K., Ali, R., & Munir, S. (2019). Environmental and economic impacts of better cotton: A panel data analysis. Environmental Science and Pollution Research, 26(18), 18113–18123. DOI: 10.1007/s11356-019-05109-x